
Nuclear Shell Model

Morten Hjorth-Jensen, National Superconducting Cyclotron
Laboratory and Department of Physics and Astronomy, Michigan
State University, East Lansing, MI 48824, USA & Department of

Physics, University of Oslo, Oslo, Norway

May 18-22

Slater determinants as basis states, Repetition
The simplest possible choice for many-body wavefunctions are product wave-

functions. That is

Ψ(x1, x2, x3, . . . , xA) ≈ φ1(x1)φ2(x2)φ3(x3) . . .

because we are really only good at thinking about one particle at a time. Such
product wavefunctions, without correlations, are easy to work with; for example,
if the single-particle states φi(x) are orthonormal, then the product wavefunctions
are easy to orthonormalize.

Similarly, computing matrix elements of operators are relatively easy, because
the integrals factorize.

The price we pay is the lack of correlations, which we must build up by
using many, many product wavefunctions. (Thus we have a trade-off: compact
representation of correlations but difficult integrals versus easy integrals but
many states required.)

Slater determinants as basis states, repetition
Because we have fermions, we are required to have antisymmetric wavefunc-

tions, e.g.
Ψ(x1, x2, x3, . . . , xA) = −Ψ(x2, x1, x3, . . . , xA)

etc. This is accomplished formally by using the determinantal formalism

Ψ(x1, x2, . . . , xA) = 1√
A!

det

∣∣∣∣∣∣∣∣∣
φ1(x1) φ1(x2) . . . φ1(xA)
φ2(x1) φ2(x2) . . . φ2(xA)

...
φA(x1) φA(x2) . . . φA(xA)

∣∣∣∣∣∣∣∣∣
Product wavefunction + antisymmetry = Slater determinant.



Slater determinants as basis states

Ψ(x1, x2, . . . , xA) = 1√
N !

det

∣∣∣∣∣∣∣∣∣
φ1(x1) φ1(x2) . . . φ1(xA)
φ2(x1) φ2(x2) . . . φ2(xA)

...
φA(x1) φA(x2) . . . φA(xA)

∣∣∣∣∣∣∣∣∣
Properties of the determinant (interchange of any two rows or any two columns
yields a change in sign; thus no two rows and no two columns can be the same)
lead to the Pauli principle:

• No two particles can be at the same place (two columns the same); and

• No two particles can be in the same state (two rows the same).

Slater determinants as basis states
As a practical matter, however, Slater determinants beyond N = 4 quickly

become unwieldy. Thus we turn to the occupation representation or second
quantization to simplify calculations.

The occupation representation, using fermion creation and annihilation
operators, is compact and efficient. It is also abstract and, at first encounter, not
easy to internalize. It is inspired by other operator formalism, such as the ladder
operators for the harmonic oscillator or for angular momentum, but unlike those
cases, the operators do not have coordinate space representations.

Instead, one can think of fermion creation/annihilation operators as a game
of symbols that compactly reproduces what one would do, albeit clumsily, with
full coordinate-space Slater determinants.

Quick repetition of the occupation representation
We start with a set of orthonormal single-particle states {φi(x)}. (Note: this

requirement, and others, can be relaxed, but leads to a more involved formalism.)
Any orthonormal set will do.

To each single-particle state φi(x) we associate a creation operator â†i and
an annihilation operator âi.

When acting on the vacuum state |0〉, the creation operator â†i causes a
particle to occupy the single-particle state φi(x):

φi(x)→ â†i |0〉

Quick repetition of the occupation representation
But with multiple creation operators we can occupy multiple states:

φi(x)φj(x′)φk(x′′)→ â†i â
†
j â
†
k|0〉.
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Now we impose antisymmetry, by having the fermion operators satisfy anti-
commutation relations:

â†i â
†
j + â†j â

†
i = [â†i , â

†
j ]+ = {â†i , â

†
j} = 0

so that
â†i â
†
j = −â†j â

†
i

Quick repetition of the occupation representation
Because of this property, automatically â†i â

†
i = 0, enforcing the Pauli exclusion

principle. Thus when writing a Slater determinant using creation operators,

â†i â
†
j â
†
k . . . |0〉

each index i, j, k, . . . must be unique.

Full Configuration Interaction Theory
We have defined the ansatz for the ground state as

|Φ0〉 =

∏
i≤F

â†i

 |0〉,
where the index i defines different single-particle states up to the Fermi level.
We have assumed that we have N fermions. A given one-particle-one-hole (1p1h)
state can be written as

|Φa
i 〉 = â†aâi|Φ0〉,

while a 2p2h state can be written as

|Φab
ij 〉 = â†aâ

†
bâj âi|Φ0〉,

and a general NpNh state as

|Φabc...
ijk...〉 = â†aâ

†
bâ
†
c . . . âkâj âi|Φ0〉.

Full Configuration Interaction Theory
We can then expand our exact state function for the ground state as

|Ψ0〉 = C0|Φ0〉+
∑
ai

Ca
i |Φa

i 〉+
∑
abij

Cab
ij |Φab

ij 〉+ · · · = (C0 + Ĉ)|Φ0〉,

where we have introduced the so-called correlation operator

Ĉ =
∑
ai

Ca
i â
†
aâi +

∑
abij

Cab
ij â
†
aâ
†
bâj âi + . . .

3



Since the normalization of Ψ0 is at our disposal and since C0 is by hypothesis
non-zero, we may arbitrarily set C0 = 1 with corresponding proportional changes
in all other coefficients. Using this so-called intermediate normalization we have

〈Ψ0|Φ0〉 = 〈Φ0|Φ0〉 = 1,

resulting in
|Ψ0〉 = (1 + Ĉ)|Φ0〉.

Full Configuration Interaction Theory
We rewrite

|Ψ0〉 = C0|Φ0〉+
∑
ai

Ca
i |Φa

i 〉+
∑
abij

Cab
ij |Φab

ij 〉+ . . . ,

in a more compact form as

|Ψ0〉 =
∑
P H

CP
HΦP

H =
(∑

P H

CP
HÂ

P
H

)
|Φ0〉,

where H stands for 0, 1, . . . , n hole states and P for 0, 1, . . . , n particle states.
Our requirement of unit normalization gives

〈Ψ0|Φ0〉 =
∑
P H

|CP
H |2 = 1,

and the energy can be written as

E = 〈Ψ0|Ĥ|Φ0〉 =
∑

P P ′HH′

C∗PH 〈ΦP
H |Ĥ|ΦP ′

H′〉CP ′

H′ .

Full Configuration Interaction Theory
Normally

E = 〈Ψ0|Ĥ|Φ0〉 =
∑

P P ′HH′

C∗PH 〈ΦP
H |Ĥ|ΦP ′

H′〉CP ′

H′ ,

is solved by diagonalization setting up the Hamiltonian matrix defined by the
basis of all possible Slater determinants. A diagonalization is equivalent to
finding the variational minimum of

〈Ψ0|Ĥ|Φ0〉 − λ〈Ψ0|Φ0〉,

where λ is a variational multiplier to be identified with the energy of the system.
The minimization process results in

δ
[
〈Ψ0|Ĥ|Φ0〉 − λ〈Ψ0|Φ0〉

]
=
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∑
P ′H′

{
δ[C∗PH ]〈ΦP

H |Ĥ|ΦP ′

H′〉CP ′

H′ + C∗PH 〈ΦP
H |Ĥ|ΦP ′

H′〉δ[CP ′

H′ ]− λ(δ[C∗PH ]CP ′

H′ + C∗PH δ[CP ′

H′ ]
}

= 0.

Since the coefficients δ[C∗PH ] and δ[CP ′

H′ ] are complex conjugates it is necessary
and sufficient to require the quantities that multiply with δ[C∗PH ] to vanish.

This leads to ∑
P ′H′

〈ΦP
H |Ĥ|ΦP ′

H′〉CP ′

H′ − λCP
H = 0,

for all sets of P and H.
If we then multiply by the corresponding C∗PH and sum over PH we obtain∑

P P ′HH′

C∗PH 〈ΦP
H |Ĥ|ΦP ′

H′〉CP ′

H′ − λ
∑
P H

|CP
H |2 = 0,

leading to the identification λ = E. This means that we have for all PH sets∑
P ′H′

〈ΦP
H |Ĥ − E|ΦP ′

H′〉 = 0. (1)

Full Configuration Interaction Theory
An alternative way to derive the last equation is to start from

(Ĥ − E)|Ψ0〉 = (Ĥ − E)
∑

P ′H′

CP ′

H′ |ΦP ′

H′〉 = 0,

and if this equation is successively projected against all ΦP
H in the expansion of

Ψ, then the last equation on the previous slide results. As stated previously, one
solves this equation normally by diagonalization. If we are able to solve this
equation exactly (that is numerically exactly) in a large Hilbert space (it will
be truncated in terms of the number of single-particle states included in the
definition of Slater determinants), it can then serve as a benchmark for other
many-body methods which approximate the correlation operator Ĉ.

Full Configuration Interaction Theory
For reasons to come (links with Coupled-Cluster theory and Many-Body

perturbation theory), we will rewrite Eq. ( ??) as a set of coupled non-linear
equations in terms of the unknown coefficients CP

H .
To see this, we look at the contributions arising from

〈ΦP
H | = 〈Φ0|

in Eq. (??), that is we multiply with 〈Φ0| from the left in

(Ĥ − E)
∑

P ′H′

CP ′

H′ |ΦP ′

H′〉 = 0.
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If we assume that we have a two-body operator at most, Slater’s rule gives then
an equation for the correlation energy in terms of Ca

i and Cab
ij only. We get then

〈Φ0|Ĥ − E|Φ0〉+
∑
ai

〈Φ0|Ĥ − E|Φa
i 〉Ca

i +
∑
abij

〈Φ0|Ĥ − E|Φab
ij 〉Cab

ij = 0,

or
E − E0 = ∆E =

∑
ai

〈Φ0|Ĥ|Φa
i 〉Ca

i +
∑
abij

〈Φ0|Ĥ|Φab
ij 〉Cab

ij ,

where the energy E0 is the reference energy and ∆E defines the so-called
correlation energy. The single-particle basis functions could be the results of a
Hartree-Fock calculation or just the eigenstates of the non-interacting part of
the Hamiltonian.

In our chapter on Hartree-Fock calculations, we have already computed the
matrix 〈Φ0|Ĥ|Φa

i 〉 and 〈Φ0|Ĥ|Φab
ij 〉. If we are using a Hartree-Fock basis, then

the matrix elements 〈Φ0|Ĥ|Φa
i 〉 and we are left with a correlation energy given

by
E − E0 = ∆EHF =

∑
abij

〈Φ0|Ĥ|Φab
ij 〉Cab

ij .

Full Configuration Interaction Theory
Inserting the various matrix elements we can rewrite the previous equation as

∆E =
∑
ai

〈i|f̂ |a〉Ca
i +

∑
abij

〈ij|v̂|ab〉Cab
ij .

This equation determines the correlation energy but not the coefficients C. We
need more equations. Our next step is to set up

〈Φa
i |Ĥ−E|Φ0〉+

∑
bj

〈Φa
i |Ĥ−E|Φb

j〉Cb
j +
∑
bcjk

〈Φa
i |Ĥ−E|Φbc

jk〉Cbc
jk+

∑
bcdjkl

〈Φa
i |Ĥ−E|Φbcd

jkl〉Cbcd
jkl = 0,

as this equation will allow us to find an expression for the coefficents Ca
i since

we can rewrite this equation as

〈i|f̂ |a〉+〈Φa
i |Ĥ|Φa

i 〉Ca
i +

∑
bj 6=ai

〈Φa
i |Ĥ|Φb

j〉Cb
j +
∑
bcjk

〈Φa
i |Ĥ|Φbc

jk〉Cbc
jk+

∑
bcdjkl

〈Φa
i |Ĥ|Φbcd

jkl〉Cbcd
jkl = 0.

Full Configuration Interaction Theory
We rewrite this equation as

Ca
i = −(〈Φa

i |Ĥ|Φa
i )−1

×

〈i|f̂ |a〉+
∑

bj 6=ai

〈Φa
i |Ĥ|Φb

j〉Cb
j +

∑
bcjk

〈Φa
i |Ĥ|Φbc

jk〉Cbc
jk +

∑
bcdjkl

〈Φa
i |Ĥ|Φbcd

jkl〉Cbcd
jkl

 .
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Since these equations are solved iteratively ( that is we can start with a guess
for the coefficients Ca

i ), it is common to start the iteration by setting

Ca
i = − 〈i|f̂ |a〉

〈Φa
i |Ĥ|Φa

i 〉
,

and the denominator can be written as

Ca
i = 〈i|f̂ |a〉

〈i|f̂ |i〉 − 〈a|f̂ |a〉+ 〈ai|v̂|ai〉
.

The observant reader will however see that we need an equation for Cbc
jk and

Cbcd
jkl as well. To find equations for these coefficients we need then to continue

our multiplications from the left with the various ΦP
H terms.

Full Configuration Interaction Theory
For Cbc

jk we need then

〈Φab
ij |Ĥ − E|Φ0〉+

∑
kc

〈Φab
ij |Ĥ − E|Φc

k〉Cc
k+

∑
cdkl

〈Φab
ij |Ĥ−E|Φcd

kl 〉Ccd
kl +

∑
cdeklm

〈Φab
ij |Ĥ−E|Φcde

klm〉Ccde
klm+

∑
cdefklmn

〈Φab
ij |Ĥ−E|Φ

cdef
klmn〉C

cdef
klmn = 0,

and we can isolate the coefficients Ccd
kl in a similar way as we did for the

coefficients Ca
i . At the end we can rewrite our solution of the Schrödinger

equation in terms of n coupled equations for the coefficients CP
H . This is a

very cumbersome way of solving the equation. However, by using this iterative
scheme we can illustrate how we can compute the various terms in the wave
operator or correlation operator Ĉ. We will later identify the calculation of the
various terms CP

H as parts of different many-body approximations to full CI. In
particular, ww can relate this non-linear scheme with Coupled Cluster theory
and many-body perturbation theory. .

Full Configuration Interaction Theory
If we use a Hartree-Fock basis, we simplify this equation

∆E =
∑
ai

〈i|f̂ |a〉Ca
i +

∑
abij

〈ij|v̂|ab〉Cab
ij .

What about

〈Φa
i |Ĥ−E|Φ0〉+

∑
bj

〈Φa
i |Ĥ−E|Φb

j〉Cb
j +
∑
bcjk

〈Φa
i |Ĥ−E|Φbc

jk〉Cbc
jk+

∑
bcdjkl

〈Φa
i |Ĥ−E|Φbcd

jkl〉Cbcd
jkl = 0,
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and

〈Φab
ij |Ĥ − E|Φ0〉+

∑
kc

〈Φab
ij |Ĥ − E|Φc

k〉Cc
k +

∑
cdkl

〈Φab
ij |Ĥ − E|Φcd

kl 〉Ccd
kl +

∑
cdeklm

〈Φab
ij |Ĥ − E|Φcde

klm〉Ccde
klm +

∑
cdefklmn

〈Φab
ij |Ĥ − E|Φ

cdef
klmn〉C

cdef
klmn = 0?

Building a many-body basis
Let us now sketch how construct a working code that constructs the many-

body Hamiltonian matrix in a basis of Slater determinants and allows us to find
the low-lying eigenenergies. This is referred to as the configuration-interaction
method or shell-model diagonalization (or the interacting shell model).

The first step in such codes is to construct the many-body basis.
While the formalism is independent of the choice of basis, the effectiveness

of a calculation will certainly be basis dependent.
Furthermore there are common conventions useful to know.

Building a many-body basis
First, the single-particle basis has angular momentum as a good quantum

number. You can imagine the single-particle wavefunctions being generated
by a one-body Hamiltonian, for example a harmonic oscillator. Modifications
include harmonic oscillator plus spin-orbit splitting, or self-consistent mean-field
potentials, or the Woods-Saxon potential which mocks up the self-consistent
mean-field.

For nuclei, the harmonic oscillator, modified by spin-orbit splitting, provides
a useful language for describing single-particle states.

Each single-particle state is labeled by the following quantum numbers:

• Orbital angular momentum l

• Intrinsic spin s = 1/2 for protons and neutrons

• Angular momentum j = l ± 1/2

• z-component jz (or m)

• Some labeling of the radial wavefunction, typically n the number of nodes
in the radial wavefunction, but in the case of harmonic oscillator one can
also use the principal quantum number N , where the harmonic oscillator
energy is (N + 3/2)~ω.
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Building a many-body basis
In this format one labels states by n(l)j , with (l) replaced by a letter: s for

l = 0, p for l = 1, d for l = 2, f for l = 3, and thenceforth alphabetical.
In practice the single-particle space has to be severely truncated. This

truncation is typically based upon the single-particle energies, which is the
effective energy from a mean-field potential.

Sometimes we freeze the core and only consider a valence space. For example,
one may assume a frozen 4He core, with two protons and two neutrons in the
0s1/2 shell, and then only allow active particles in the 0p1/2 and 0p3/2 orbits.

Building a many-body basis
Another example is a frozen 16O core, with eight protons and eight neutrons

filling the 0s1/2, 0p1/2 and 0p3/2 orbits, with valence particles in the 0d5/2, 1s1/2
and 0d3/2 orbits.

Sometimes we refer to nuclei by the valence space where their last nucleons
go. So, for example, we call 12C a p-shell nucleus, while 26Al is an sd-shell
nucleus and 56Fe is a pf -shell nucleus.

Building a many-body basis
There are different kinds of truncations.

• For example, one can start with ‘filled’ orbits (almost always the lowest),
and then allow one, two, three... particles excited out of those filled orbits.
These are called 1p-1h, 2p-2h, 3p-3h excitations.

• Alternately, one can state a maximal orbit and allow all possible configura-
tions with particles occupying states up to that maximum. This is called
full configuration.

• Finally, for particular use in nuclear physics, there is the energy truncation,
also called the N~Ω or Nmax truncation.

Building a many-body basis
Here one works in a harmonic oscillator basis, with each major oscillator shell

assigned a principal quantum number N = 0, 1, 2, 3, ....
The N~Ω or Nmax truncation: Any configuration is given an noninteracting

energy, which is the sum of the single-particle harmonic oscillator energies. (Thus
this ignores spin-orbit splitting.)
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Building a many-body basis
Excited state are labeled relative to the lowest configuration by the number of

harmonic oscillator quanta.
This truncation is useful because: if one includes all configuration up to some

Nmax, and has a translationally invariant interaction, then the intrinsic motion
and the center-of-mass motion factor. In other words, we can know exactly the
center-of-mass wavefunction.

Building a many-body basis
In almost all cases, the many-body Hamiltonian is rotationally invariant. This

means it commutes with the operators Ĵ2, Ĵz and so eigenstates will have good
J,M . Furthermore, the eigenenergies do not depend upon the orientation M .

Therefore we can choose to construct a many-body basis which has fixed M ;
this is called an M -scheme basis.

Alternately, one can construct a many-body basis which has fixed J , or a
J-scheme basis.

The Hamiltonian matrix will have smaller dimensions (a factor of 10 or
more) in the J-scheme than in the M -scheme. On the other hand, as we’ll
show in the next slide, the M -scheme is very easy to construct with Slater
determinants, while the J-scheme basis states, and thus the matrix elements,
are more complicated, almost always being linear combinations of M -scheme
states. J-scheme bases are important and useful, but we’ll focus on the simpler
M -scheme.

Building a many-body basis
The quantum number m is additive (because the underlying group is Abelian):

if a Slater determinant â†i â
†
j â
†
k . . . |0〉 is built from single-particle states all with

good m, then the total

M = mi +mj +mk + . . .

This is not true of J , because the angular momentum group SU(2) is not Abelian.
The upshot is that

• It is easy to construct a Slater determinant with good total M ;

• It is trivial to calculate M for each Slater determinant;

• So it is easy to construct an M -scheme basis with fixed total M .

Note that the individualM -scheme basis states will not, in general, have good to-
tal J . Because the Hamiltonian is rotationally invariant, however, the eigenstates
will have good J . (The situation is muddied when one has states of different J
that are nonetheless degenerate.)
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Building a many-body basis
Example: two j = 1/2 orbits

Index n l j mj

1 0 0 1/2 -1/2
2 0 0 1/2 1/2
3 1 0 1/2 -1/2
4 1 0 1/2 1/2

Note: the order is arbitrary. There are
(

4
2

)
= 6 two-particle states, which we

list with the total M :

Occupied M
1,2 0
1,3 -1
1,4 0
2,3 0
2,4 1
3,4 0

and 1 each with M = ±1.

Building a many-body basis
Example: consider using only single particle states from the 0d5/2 space. They

have the following quantum numbers

Index n l j mj

1 0 2 5/2 -5/2
2 0 2 5/2 -3/2
3 0 2 5/2 -1/2
4 0 2 5/2 1/2
5 0 2 5/2 3/2
6 0 2 5/2 5/2

There are
(

6
2

)
= 15 two-particle states, which we list with the total M :

Occupied M Occupied M Occupied M
1,2 -4 2,3 -2 3,5 1
1,3 -3 2,4 -1 3,6 2
1,4 -2 2,5 0 4,5 2
1,5 -1 2,6 1 4,6 3
1,6 0 3,4 0 5,6 4
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Example case: pairing Hamiltonian
We consider a space with 2Ω single-particle states, with each state labeled by

k = 1, 2, 3,Ω and m = ±1/2. The convention is that the state with k > 0 has
m = +1/2 while −k has m = −1/2.

The Hamiltonian we consider is

Ĥ = −GP̂+P̂−,

where
P̂+ =

∑
k>0

â†kâ
†
−k.

and P̂− = (P̂+)†.
This problem can be solved using what is called the quasi-spin formalism to

obtain the exact results. Thereafter we will try again using the explicit Slater
determinant formalism.

Example case: pairing Hamiltonian
One can show (and this is part of the project) that[

P̂+, P̂−

]
=
∑
k>0

(
â†kâk + â†−kâ−k − 1

)
= N̂ − Ω.

Now define
P̂z = 1

2(N̂ − Ω).

Finally you can show [
P̂z, P̂±

]
= ±P̂±.

This means the operators P̂±, P̂z form a so-called SU(2) algebra, and we can
use all our insights about angular momentum, even though there is no actual
angular momentum involved

So we rewrite the Hamiltonian to make this explicit:

Ĥ = −GP̂+P̂− = −G
(
P̂ 2 − P̂ 2

z + P̂z

)
Example case: pairing Hamiltonian

Because of the SU(2) algebra, we know that the eigenvalues of P̂ 2 must be of
the form p(p+ 1), with p either integer or half-integer, and the eigenvalues of P̂z

are mp with p ≥ |mp|, with mp also integer or half-integer.
But because P̂z = (1/2)(N̂ − Ω), we know that for N particles the value

mp = (N − Ω)/2. Furthermore, the values of mp range from −Ω/2 (for N = 0)
to +Ω/2 (for N = 2Ω, with all states filled).

We deduce the maximal p = Ω/2 and for a given n the values range of p
range from |N − Ω|/2 to Ω/2 in steps of 1 (for an even number of particles)
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Following Racah we introduce the notation p = (Ω − v)/2 where v =
0, 2, 4, ...,Ω− |N − Ω| With this it is easy to deduce that the eigenvalues of the
pairing Hamiltonian are

−G(N − v)(2Ω + 2−N − v)/4

This also works for N odd, with v = 1, 3, 5, . . . .

Example case: pairing Hamiltonian
Let’s take a specific example: Ω = 3 so there are 6 single-particle states, and

N = 3, with v = 1, 3. Therefore there are two distinct eigenvalues,

E = −2G, 0

Now let’s work this out explicitly. The single particle degrees of freedom are
defined as

Index k m
1 1 -1/2
2 -1 1/2
3 2 -1/2
4 -2 1/2
5 3 -1/2
6 -3 1/2

There are
(

6
3

)
= 20 three-particle states, but there are 9 states with M =

+1/2, namely |1, 2, 3〉, |1, 2, 5〉, |1, 4, 6〉, |2, 3, 4〉, |2, 3, 6〉, |2, 4, 5〉, |2, 5, 6〉, |3, 4, 6〉, |4, 5, 6〉.

Example case: pairing Hamiltonian
In this basis, the operator

P̂+ = â†1â
†
2 + â†3â

†
4 + â†5â

†
6

From this we can determine that

P̂−|1, 4, 6〉 = P̂−|2, 3, 6〉 = P̂−|2, 4, 5〉 = 0

so those states all have eigenvalue 0.

Example case: pairing Hamiltonian
Now for further example,

P̂−|1, 2, 3〉 = |3〉

so
P̂+P̂−|1, 2, 3〉 = |1, 2, 3〉+ |3, 4, 3〉+ |5, 6, 3〉
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The second term vanishes because state 3 is occupied twice, and reordering the
last term we get

P̂+P̂−|1, 2, 3〉 = |1, 2, 3〉+ |3, 5, 6〉

without picking up a phase.

Example case: pairing Hamiltonian
Continuing in this fashion, with the previous ordering of the many-body

states ( |1, 2, 3〉, |1, 2, 5〉, |1, 4, 6〉, |2, 3, 4〉, |2, 3, 6〉, |2, 4, 5〉, |2, 5, 6〉, |3, 4, 6〉, |4, 5, 6〉)
the Hamiltonian matrix of this system is

H = −G



1 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 1


This is useful for our project. One can by hand confirm that there are 3
eigenvalues −2G and 6 with value zero.

Example case: pairing Hamiltonian
Another example Using the (1/2)4 single-particle space, resulting in eight

single-particle states

Index n l s ms

1 0 0 1/2 -1/2
2 0 0 1/2 1/2
3 1 0 1/2 -1/2
4 1 0 1/2 1/2
5 2 0 1/2 -1/2
6 2 0 1/2 1/2
7 3 0 1/2 -1/2
8 3 0 1/2 1/2

and then taking only 4-particle, M = 0 states that have no ‘broken pairs’, there
are six basis Slater determinants:

• |1, 2, 3, 4〉,

• |1, 2, 5, 6〉,

• |1, 2, 7, 8〉,
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• |3, 4, 5, 6〉,

• |3, 4, 7, 8〉,

• |5, 6, 7, 8〉

Example case: pairing Hamiltonian
Now we take the following Hamiltonian

Ĥ =
∑

n

nδN̂n −GP̂ †P̂

where
N̂n = â†n,m=+1/2ân,m=+1/2 + â†n,m=−1/2ân,m=−1/2

and
P̂ † =

∑
n

â†n,m=+1/2â
†
n,m=−1/2

We can write down the 6× 6 Hamiltonian in the basis from the prior slide:

H =


2δ − 2G −G −G −G −G 0
−G 4δ − 2G −G −G −0 −G
−G −G 6δ − 2G 0 −G −G
−G −G 0 6δ − 2G −G −G
−G 0 −G −G 8δ − 2G −G
0 −G −G −G −G 10δ − 2G


(You should check by hand that this is correct.)

For δ = 0 we have the closed form solution of the g.s. energy given by −6G.
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