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Why Hartree-Fock? Derivation of Hartree-Fock equations
in coordinate space
Hartree-Fock (HF) theory is an algorithm for finding an approximative ex-

pression for the ground state of a given Hamiltonian. The basic ingredients
are

• Define a single-particle basis {ψα} so that

ĥHFψα = εαψα

with the Hartree-Fock Hamiltonian defined as

ĥHF = t̂+ ûext + ûHF

• The term ûHF is a single-particle potential to be determined by the HF
algorithm.

• The HF algorithm means to choose ûHF in order to have

〈Ĥ〉 = EHF = 〈Φ0|Ĥ|Φ0〉

that is to find a local minimum with a Slater determinant Φ0 being the ansatz
for the ground state.

• The variational principle ensures that EHF ≥ E0, with E0 the exact ground
state energy.



Why Hartree-Fock? Derivation of Hartree-Fock equations
in coordinate space

We will show that the Hartree-Fock Hamiltonian ĥHF equals our definition of
the operator f̂ discussed in connection with the new definition of the normal-
ordered Hamiltonian (see later lectures), that is we have, for a specific matrix
element

〈p|ĥHF|q〉 = 〈p|f̂ |q〉 = 〈p|t̂+ ûext|q〉+
∑
i≤F

〈pi|V̂ |qi〉AS ,

meaning that
〈p|ûHF|q〉 =

∑
i≤F

〈pi|V̂ |qi〉AS .

The so-called Hartree-Fock potential ûHF brings an explicit medium dependence
due to the summation over all single-particle states below the Fermi level F . It
brings also in an explicit dependence on the two-body interaction (in nuclear
physics we can also have complicated three- or higher-body forces). The two-
body interaction, with its contribution from the other bystanding fermions,
creates an effective mean field in which a given fermion moves, in addition to the
external potential ûext which confines the motion of the fermion. For systems like
nuclei, there is no external confining potential. Nuclei are examples of self-bound
systems, where the binding arises due to the intrinsic nature of the strong force.
For nuclear systems thus, there would be no external one-body potential in the
Hartree-Fock Hamiltonian.

Variational Calculus and Lagrangian Multipliers
The calculus of variations involves problems where the quantity to be minimized

or maximized is an integral.
In the general case we have an integral of the type

E[Φ] =
∫ b

a

f(Φ(x), ∂Φ
∂x

, x)dx,

where E is the quantity which is sought minimized or maximized. The problem
is that although f is a function of the variables Φ, ∂Φ/∂x and x, the exact
dependence of Φ on x is not known. This means again that even though the
integral has fixed limits a and b, the path of integration is not known. In our
case the unknown quantities are the single-particle wave functions and we wish
to choose an integration path which makes the functional E[Φ] stationary. This
means that we want to find minima, or maxima or saddle points. In physics
we search normally for minima. Our task is therefore to find the minimum of
E[Φ] so that its variation δE is zero subject to specific constraints. In our case
the constraints appear as the integral which expresses the orthogonality of the
single-particle wave functions. The constraints can be treated via the technique
of Lagrangian multipliers
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Variational Calculus and Lagrangian Multipliers
Let us specialize to the expectation value of the energy for one particle in

three-dimensions. This expectation value reads

E =
∫
dxdydzψ∗(x, y, z)Ĥψ(x, y, z),

with the constraint ∫
dxdydzψ∗(x, y, z)ψ(x, y, z) = 1,

and a Hamiltonian
Ĥ = −1

2∇
2 + V (x, y, z).

We will, for the sake of notational convenience, skip the variables x, y, z below,
and write for example V (x, y, z) = V .

Variational Calculus and Lagrangian Multipliers
The integral involving the kinetic energy can be written as, with the function

ψ vanishing strongly for large values of x, y, z (given here by the limits a and b),∫ b

a

dxdydzψ∗
(
−1

2∇
2
)
ψdxdydz = ψ∗∇ψ|ba +

∫ b

a

dxdydz
1
2∇ψ

∗∇ψ.

We will drop the limits a and b in the remaining discussion. Inserting this
expression into the expectation value for the energy and taking the variational
minimum we obtain

δE = δ

{∫
dxdydz

(
1
2∇ψ

∗∇ψ + V ψ∗ψ

)}
= 0.

Variational Calculus and Lagrangian Multipliers
The constraint appears in integral form as∫

dxdydzψ∗ψ = constant,

and multiplying with a Lagrangian multiplier λ and taking the variational
minimum we obtain the final variational equation

δ

{∫
dxdydz

(
1
2∇ψ

∗∇ψ + V ψ∗ψ − λψ∗ψ
)}

= 0.

We introduce the function f

f = 1
2∇ψ

∗∇ψ + V ψ∗ψ − λψ∗ψ = 1
2(ψ∗xψx + ψ∗yψy + ψ∗zψz) + V ψ∗ψ − λψ∗ψ,

where we have skipped the dependence on x, y, z and introduced the shorthand
ψx, ψy and ψz for the various derivatives.
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Variational Calculus and Lagrangian Multipliers
For ψ∗ the Euler-Lagrange equations yield

∂f

∂ψ∗
− ∂

∂x

∂f

∂ψ∗x
− ∂

∂y

∂f

∂ψ∗y
− ∂

∂z

∂f

∂ψ∗z
= 0,

which results in
−1

2(ψxx + ψyy + ψzz) + V ψ = λψ.

We can then identify the Lagrangian multiplier as the energy of the system.
The last equation is nothing but the standard Schroedinger equation and the
variational approach discussed here provides a powerful method for obtaining
approximate solutions of the wave function.

Definitions and notations
Before we proceed we need some definitions. We will assume that the inter-

acting part of the Hamiltonian can be approximated by a two-body interaction.
This means that our Hamiltonian is written as the sum of some onebody part
and a twobody part

Ĥ = Ĥ0 + ĤI =
A∑
i=1

ĥ0(xi) +
A∑
i<j

v̂(rij), (1)

with

H0 =
A∑
i=1

ĥ0(xi). (2)

The onebody part uext(xi) is normally approximated by a harmonic oscillator
potential or the Coulomb interaction an electron feels from the nucleus. However,
other potentials are fully possible, such as one derived from the self-consistent
solution of the Hartree-Fock equations to be discussed here.

Definitions and notations
Our Hamiltonian is invariant under the permutation (interchange) of two

particles. Since we deal with fermions however, the total wave function is
antisymmetric. Let P̂ be an operator which interchanges two particles. Due to
the symmetries we have ascribed to our Hamiltonian, this operator commutes
with the total Hamiltonian,

[Ĥ, P̂ ] = 0,
meaning that Ψλ(x1, x2, . . . , xA) is an eigenfunction of P̂ as well, that is

P̂ijΨλ(x1, x2, . . . , xi, . . . , xj , . . . , xA) = βΨλ(x1, x2, . . . , xi, . . . , xj , . . . , xA),

where β is the eigenvalue of P̂ . We have introduced the suffix ij in order to
indicate that we permute particles i and j. The Pauli principle tells us that the
total wave function for a system of fermions has to be antisymmetric, resulting
in the eigenvalue β = −1.
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Definitions and notations
In our case we assume that we can approximate the exact eigenfunction with

a Slater determinant

Φ(x1, x2, . . . , xA, α, β, . . . , σ) = 1√
A!

∣∣∣∣∣∣∣∣∣∣
ψα(x1) ψα(x2) . . . . . . ψα(xA)
ψβ(x1) ψβ(x2) . . . . . . ψβ(xA)
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .

ψσ(x1) ψσ(x2) . . . . . . ψσ(xA)

∣∣∣∣∣∣∣∣∣∣
,

(3)
where xi stand for the coordinates and spin values of a particle i and α, β, . . . , γ
are quantum numbers needed to describe remaining quantum numbers.

Definitions and notations
The single-particle function ψα(xi) are eigenfunctions of the onebody Hamil-

tonian hi, that is
ĥ0(xi) = t̂(xi) + ûext(xi),

with eigenvalues

ĥ0(xi)ψα(xi) =
(
t̂(xi) + ûext(xi)

)
ψα(xi) = εαψα(xi).

The energies εα are the so-called non-interacting single-particle energies, or
unperturbed energies. The total energy is in this case the sum over all single-
particle energies, if no two-body or more complicated many-body interactions
are present.

Definitions and notations
Let us denote the ground state energy by E0. According to the variational

principle we have
E0 ≤ E[Φ] =

∫
Φ∗ĤΦdτ

where Φ is a trial function which we assume to be normalized∫
Φ∗Φdτ = 1,

where we have used the shorthand dτ = dx1dr2 . . . drA.

Definitions and notations
In the Hartree-Fock method the trial function is the Slater determinant of

Eq. (??) which can be rewritten as

Φ(x1, x2, . . . , xA, α, β, . . . , ν) = 1√
A!

∑
P

(−)P P̂ψα(x1)ψβ(x2) . . . ψν(xA) =
√
A!ÂΦH ,

where we have introduced the antisymmetrization operator Â defined by the
summation over all possible permutations of two particles.
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Definitions and notations
It is defined as

Â = 1
A!
∑
p

(−)pP̂ , (4)

with p standing for the number of permutations. We have introduced for later
use the so-called Hartree-function, defined by the simple product of all possible
single-particle functions

ΦH(x1, x2, . . . , xA, α, β, . . . , ν) = ψα(x1)ψβ(x2) . . . ψν(xA).

Definitions and notations
Both Ĥ0 and ĤI are invariant under all possible permutations of any two

particles and hence commute with Â

[H0, Â] = [HI , Â] = 0. (5)

Furthermore, Â satisfies
Â2 = Â, (6)

since every permutation of the Slater determinant reproduces it.

Definitions and notations
The expectation value of Ĥ0∫

Φ∗Ĥ0Φdτ = A!
∫

Φ∗HÂĤ0ÂΦHdτ

is readily reduced to ∫
Φ∗Ĥ0Φdτ = A!

∫
Φ∗HĤ0ÂΦHdτ,

where we have used Eqs. (??) and (??). The next step is to replace the anti-
symmetrization operator by its definition and to replace Ĥ0 with the sum of
one-body operators∫

Φ∗Ĥ0Φdτ =
A∑
i=1

∑
p

(−)p
∫

Φ∗H ĥ0P̂ΦHdτ.

Definitions and notations
The integral vanishes if two or more particles are permuted in only one of the

Hartree-functions ΦH because the individual single-particle wave functions are
orthogonal. We obtain then∫

Φ∗Ĥ0Φdτ =
A∑
i=1

∫
Φ∗H ĥ0ΦHdτ.
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Orthogonality of the single-particle functions allows us to further simplify the
integral, and we arrive at the following expression for the expectation values of
the sum of one-body Hamiltonians∫

Φ∗Ĥ0Φdτ =
A∑
µ=1

∫
ψ∗µ(x)ĥ0ψµ(x)dxdr. (7)

Definitions and notations
We introduce the following shorthand for the above integral

〈µ|ĥ0|µ〉 =
∫
ψ∗µ(x)ĥ0ψµ(x)dx,

and rewrite Eq. (??) as ∫
Φ∗Ĥ0Φdτ =

A∑
µ=1
〈µ|ĥ0|µ〉. (8)

Definitions and notations
The expectation value of the two-body part of the Hamiltonian is obtained in

a similar manner. We have∫
Φ∗ĤIΦdτ = A!

∫
Φ∗HÂĤIÂΦHdτ,

which reduces to∫
Φ∗ĤIΦdτ =

A∑
i≤j=1

∑
p

(−)p
∫

Φ∗H v̂(rij)P̂ΦHdτ,

by following the same arguments as for the one-body Hamiltonian.

Definitions and notations
Because of the dependence on the inter-particle distance rij , permutations of

any two particles no longer vanish, and we get∫
Φ∗ĤIΦdτ =

A∑
i<j=1

∫
Φ∗H v̂(rij)(1− Pij)ΦHdτ.

where Pij is the permutation operator that interchanges particle i and particle
j. Again we use the assumption that the single-particle wave functions are
orthogonal.
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Definitions and notations
We obtain∫

Φ∗ĤIΦdτ = 1
2

A∑
µ=1

A∑
ν=1

[∫
ψ∗µ(xi)ψ∗ν(xj)v̂(rij)ψµ(xi)ψν(xj)dxidxj

−
∫
ψ∗µ(xi)ψ∗ν(xj)v̂(rij)ψν(xi)ψµ(xj)dxidxj

]
.

(9)

The first term is the so-called direct term. It is frequently also called the Hartree
term, while the second is due to the Pauli principle and is called the exchange
term or just the Fock term. The factor 1/2 is introduced because we now run
over all pairs twice.

Definitions and notations
The last equation allows us to introduce some further definitions. The single-

particle wave functions ψµ(x), defined by the quantum numbers µ and x are
defined as the overlap

ψα(x) = 〈x|α〉.

Definitions and notations
We introduce the following shorthands for the above two integrals

〈µν|v̂|µν〉 =
∫
ψ∗µ(xi)ψ∗ν(xj)v̂(rij)ψµ(xi)ψν(xj)dxidxj ,

and
〈µν|v̂|νµ〉 =

∫
ψ∗µ(xi)ψ∗ν(xj)v̂(rij)ψν(xi)ψµ(xj)dxidxj .

Derivation of Hartree-Fock equations in coordinate space
Let us denote the ground state energy by E0. According to the variational

principle we have
E0 ≤ E[Φ] =

∫
Φ∗ĤΦdτ

where Φ is a trial function which we assume to be normalized∫
Φ∗Φdτ = 1,

where we have used the shorthand dτ = dx1dx2 . . . dxA.
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Derivation of Hartree-Fock equations in coordinate space
In the Hartree-Fock method the trial function is a Slater determinant which

can be rewritten as

Ψ(x1, x2, . . . , xA, α, β, . . . , ν) = 1√
A!

∑
P

(−)PPψα(x1)ψβ(x2) . . . ψν(xA) =
√
A!ÂΦH ,

where we have introduced the anti-symmetrization operator Â defined by the
summation over all possible permutations p of two fermions. It is defined as

Â = 1
A!
∑
p

(−)pP̂ ,

with the the Hartree-function given by the simple product of all possible single-
particle function

ΦH(x1, x2, . . . , xA, α, β, . . . , ν) = ψα(x1)ψβ(x2) . . . ψν(xA).

Derivation of Hartree-Fock equations in coordinate space
Our functional is written as

E[Φ] =
A∑
µ=1

∫
ψ∗µ(xi)ĥ0(xi)ψµ(xi)dxi+

1
2

A∑
µ=1

A∑
ν=1

[∫
ψ∗µ(xi)ψ∗ν(xj)v̂(rij)ψµ(xi)ψν(xj)dxidxj −

∫
ψ∗µ(xi)ψ∗ν(xj)v̂(rij)ψν(xi)ψµ(xj)dxidxj

]
The more compact version reads

E[Φ] =
A∑
µ

〈µ|ĥ0|µ〉+ 1
2

A∑
µν

[〈µν|v̂|µν〉 − 〈νµ|v̂|µν〉] .

Derivation of Hartree-Fock equations in coordinate space
Since the interaction is invariant under the interchange of two particles it

means for example that we have

〈µν|v̂|µν〉 = 〈νµ|v̂|νµ〉,

or in the more general case

〈µν|v̂|στ〉 = 〈νµ|v̂|τσ〉.

Derivation of Hartree-Fock equations in coordinate space
The direct and exchange matrix elements can be brought together if we define

the antisymmetrized matrix element

〈µν|v̂|µν〉AS = 〈µν|v̂|µν〉 − 〈µν|v̂|νµ〉,
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or for a general matrix element

〈µν|v̂|στ〉AS = 〈µν|v̂|στ〉 − 〈µν|v̂|τσ〉.

It has the symmetry property

〈µν|v̂|στ〉AS = −〈µν|v̂|τσ〉AS = −〈νµ|v̂|στ〉AS .

The antisymmetric matrix element is also hermitian, implying

〈µν|v̂|στ〉AS = 〈στ |v̂|µν〉AS .

Derivation of Hartree-Fock equations in coordinate space
With these notations we rewrite the Hartree-Fock functional as∫

Φ∗ĤIΦdτ = 1
2

A∑
µ=1

A∑
ν=1
〈µν|v̂|µν〉AS . (10)

Adding the contribution from the one-body operator Ĥ0 to (??) we obtain
the energy functional

E[Φ] =
A∑
µ=1
〈µ|h|µ〉+ 1

2

A∑
µ=1

A∑
ν=1
〈µν|v̂|µν〉AS . (11)

In our coordinate space derivations below we will spell out the Hartree-Fock
equations in terms of their integrals.

Derivation of Hartree-Fock equations in coordinate space
If we generalize the Euler-Lagrange equations to more variables and introduce

N2 Lagrange multipliers which we denote by εµν , we can write the variational
equation for the functional of E

δE −
A∑
µν

εµνδ

∫
ψ∗µψν = 0.

For the orthogonal wave functions ψi this reduces to

δE −
A∑
µ=1

εµδ

∫
ψ∗µψµ = 0.
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Derivation of Hartree-Fock equations in coordinate space
Variation with respect to the single-particle wave functions ψµ yields then

A∑
µ=1

∫
δψ∗µĥ0(xi)ψµdxi+

1
2

A∑
µ=1

A∑
ν=1

[∫
δψ∗µψ

∗
ν v̂(rij)ψµψνdxidxj −

∫
δψ∗µψ

∗
ν v̂(rij)ψνψµdxidxj

]
+

A∑
µ=1

∫
ψ∗µĥ0(xi)δψµdxi+

1
2

A∑
µ=1

A∑
ν=1

[∫
ψ∗µψ

∗
ν v̂(rij)δψµψνdxidxj −

∫
ψ∗µψ

∗
ν v̂(rij)ψνδψµdxidxj

]
−

A∑
µ=1

Eµ

∫
δψ∗µψµdxi−

A∑
µ=1

Eµ

∫
ψ∗µδψµdxi = 0.

Derivation of Hartree-Fock equations in coordinate space
Although the variations δψ and δψ∗ are not independent, they may in fact be

treated as such, so that the terms dependent on either δψ and δψ∗ individually
may be set equal to zero. To see this, simply replace the arbitrary variation δψ
by iδψ, so that δψ∗ is replaced by −iδψ∗, and combine the two equations. We
thus arrive at the Hartree-Fock equations[
−1

2∇
2
i +

A∑
ν=1

∫
ψ∗ν(xj)v̂(rij)ψν(xj)dxj

]
ψµ(xi)−

[
A∑
ν=1

∫
ψ∗ν(xj)v̂(rij)ψµ(xj)dxj

]
ψν(xi) = εµψµ(xi).

(12)
Notice that the integration

∫
dxj implies an integration over the spatial coordi-

nates rj and a summation over the spin-coordinate of fermion j. We note that
the factor of 1/2 in front of the sum involving the two-body interaction, has
been removed. This is due to the fact that we need to vary both δψ∗µ and δψ∗ν .
Using the symmetry properties of the two-body interaction and interchanging µ
and ν as summation indices, we obtain two identical terms.

Derivation of Hartree-Fock equations in coordinate space
The two first terms in the last equation are the one-body kinetic energy and

the electron-nucleus potential. The third or direct term is the averaged electronic
repulsion of the other electrons. As written, the term includes the self-interaction
of electrons when µ = ν. The self-interaction is cancelled in the fourth term, or
the exchange term. The exchange term results from our inclusion of the Pauli
principle and the assumed determinantal form of the wave-function. Equation
(??), in addition to the kinetic energy and the attraction from the atomic nucleus
that confines the motion of a single electron, represents now the motion of a
single-particle modified by the two-body interaction. The additional contribution
to the Schroedinger equation due to the two-body interaction, represents a mean
field set up by all the other bystanding electrons, the latter given by the sum
over all single-particle states occupied by N electrons.

The Hartree-Fock equation is an example of an integro-differential equation.
These equations involve repeated calculations of integrals, in addition to the
solution of a set of coupled differential equations. The Hartree-Fock equations
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can also be rewritten in terms of an eigenvalue problem. The solution of an
eigenvalue problem represents often a more practical algorithm and the solution
of coupled integro-differential equations. This alternative derivation of the
Hartree-Fock equations is given below.

Analysis of Hartree-Fock equations in coordinate space
A theoretically convenient form of the Hartree-Fock equation is to regard the

direct and exchange operator defined through

V dµ (xi) =
∫
ψ∗µ(xj)v̂(rij)ψµ(xj)dxj

and
V exµ (xi)g(xi) =

(∫
ψ∗µ(xj)v̂(rij)g(xj)dxj

)
ψµ(xi),

respectively.

Analysis of Hartree-Fock equations in coordinate space
The function g(xi) is an arbitrary function, and by the substitution g(xi) =

ψν(xi) we get

V exµ (xi)ψν(xi) =
(∫

ψ∗µ(xj)v̂(rij)ψν(xj)dxj
)
ψµ(xi).

We may then rewrite the Hartree-Fock equations as

ĥHF (xi)ψν(xi) = ενψν(xi),

with

ĥHF (xi) = ĥ0(xi) +
A∑
µ=1

V dµ (xi)−
A∑
µ=1

V exµ (xi),

and where ĥ0(i) is the one-body part. The latter is normally chosen as a part
which yields solutions in closed form. The harmonic oscilltor is a classical
problem thereof. We normally rewrite the last equation as

ĥHF (xi) = ĥ0(xi) + ûHF (xi).

Hartree-Fock by varying the coefficients of a wave function
expansion

Another possibility is to expand the single-particle functions in a known basis
and vary the coefficients, that is, the new single-particle wave function is written
as a linear expansion in terms of a fixed chosen orthogonal basis (for example
the well-known harmonic oscillator functions or the hydrogen-like functions etc).
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We define our new Hartree-Fock single-particle basis by performing a unitary
transformation on our previous basis (labelled with greek indices) as

ψHFp =
∑
λ

Cpλφλ. (13)

In this case we vary the coefficients Cpλ. If the basis has infinitely many solutions,
we need to truncate the above sum. We assume that the basis φλ is orthogonal.
A unitary transformation keeps the orthogonality, as discussed in exercise 1
below.

Hartree-Fock by varying the coefficients of a wave function
expansion
It is normal to choose a single-particle basis defined as the eigenfunctions of

parts of the full Hamiltonian. The typical situation consists of the solutions of
the one-body part of the Hamiltonian, that is we have

ĥ0φλ = ελφλ.

The single-particle wave functions φλ(r), defined by the quantum numbers λ
and r are defined as the overlap

φλ(r) = 〈r|λ〉.

Hartree-Fock by varying the coefficients of a wave function
expansion

In our discussions hereafter we will use our definitions of single-particle states
above and below the Fermi (F ) level given by the labels ijkl · · · ≤ F for so-called
single-hole states and abcd · · · > F for so-called particle states. For general
single-particle states we employ the labels pqrs . . . .

Hartree-Fock by varying the coefficients of a wave function
expansion
In Eq. (??), restated here

E[Φ] =
A∑
µ=1
〈µ|h|µ〉+ 1

2

A∑
µ=1

A∑
ν=1
〈µν|v̂|µν〉AS ,

we found the expression for the energy functional in terms of the basis function
φλ(r). We then varied the above energy functional with respect to the basis
functions |µ〉. Now we are interested in defining a new basis defined in terms of
a chosen basis as defined in Eq. (??). We can then rewrite the energy functional
as

E[ΦHF ] =
A∑
i=1
〈i|h|i〉+ 1

2

A∑
ij=1
〈ij|v̂|ij〉AS , (14)
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where ΦHF is the new Slater determinant defined by the new basis of Eq. (??).

Hartree-Fock by varying the coefficients of a wave function
expansion
Using Eq. (??) we can rewrite Eq. (??) as

E[Ψ] =
A∑
i=1

∑
αβ

C∗iαCiβ〈α|h|β〉+ 1
2

A∑
ij=1

∑
αβγδ

C∗iαC
∗
jβCiγCjδ〈αβ|v̂|γδ〉AS . (15)

Hartree-Fock by varying the coefficients of a wave function
expansion
We wish now to minimize the above functional. We introduce again a set

of Lagrange multipliers, noting that since 〈i|j〉 = δi,j and 〈α|β〉 = δα,β , the
coefficients Ciγ obey the relation

〈i|j〉 = δi,j =
∑
αβ

C∗iαCiβ〈α|β〉 =
∑
α

C∗iαCiα,

which allows us to define a functional to be minimized that reads

F [ΦHF ] = E[ΦHF ]−
A∑
i=1

εi
∑
α

C∗iαCiα. (16)

Hartree-Fock by varying the coefficients of a wave function
expansion

Minimizing with respect to C∗iα, remembering that the equations for C∗iα and
Ciα can be written as two independent equations, we obtain

d

dC∗iα

E[ΦHF ]−
∑
j

εj
∑
α

C∗jαCjα

 = 0,

which yields for every single-particle state i and index α (recalling that the
coefficients Ciα are matrix elements of a unitary (or orthogonal for a real
symmetric matrix) matrix) the following Hartree-Fock equations

∑
β

Ciβ〈α|h|β〉+
A∑
j=1

∑
βγδ

C∗jβCjδCiγ〈αβ|v̂|γδ〉AS = εHFi Ciα.
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Hartree-Fock by varying the coefficients of a wave function
expansion
We can rewrite this equation as (changing dummy variables)

∑
β

〈α|h|β〉+
A∑
j

∑
γδ

C∗jγCjδ〈αγ|v̂|βδ〉AS

Ciβ = εHFi Ciα.

Note that the sums over greek indices run over the number of basis set functions
(in principle an infinite number).

Hartree-Fock by varying the coefficients of a wave function
expansion
Defining

hHFαβ = 〈α|h|β〉+
A∑
j=1

∑
γδ

C∗jγCjδ〈αγ|v̂|βδ〉AS ,

we can rewrite the new equations as∑
γ

hHFαβ Ciβ = εHFi Ciα. (17)

The latter is nothing but a standard eigenvalue problem. Compared with Eq. (??),
we see that we do not need to compute any integrals in an iterative procedure
for solving the equations. It suffices to tabulate the matrix elements 〈α|h|β〉 and
〈αγ|v̂|βδ〉AS once and for all. Successive iterations require thus only a look-up
in tables over one-body and two-body matrix elements. These details will be
discussed below when we solve the Hartree-Fock equations numerical.

Hartree-Fock algorithm
Our Hartree-Fock matrix is thus

ĥHFαβ = 〈α|ĥ0|β〉+
A∑
j=1

∑
γδ

C∗jγCjδ〈αγ|v̂|βδ〉AS .

The Hartree-Fock equations are solved in an iterative waym starting with a
guess for the coefficients Cjγ = δj,γ and solving the equations by diagonalization
till the new single-particle energies εHF

i do not change anymore by a prefixed
quantity.
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Hartree-Fock algorithm
Normally we assume that the single-particle basis |β〉 forms an eigenbasis for

the operator ĥ0, meaning that the Hartree-Fock matrix becomes

ĥHFαβ = εαδα,β +
A∑
j=1

∑
γδ

C∗jγCjδ〈αγ|v̂|βδ〉AS .

The Hartree-Fock eigenvalue problem∑
β

ĥHFαβ Ciβ = εHF
i Ciα,

can be written out in a more compact form as

ĥHF Ĉ = εHFĈ.

Hartree-Fock algorithm
The Hartree-Fock equations are, in their simplest form, solved in an iterative

way, starting with a guess for the coefficients Ciα. We label the coefficients as
C

(n)
iα , where the subscript n stands for iteration n. To set up the algorithm we

can proceed as follows:

• We start with a guess C(0)
iα = δi,α. Alternatively, we could have used

random starting values as long as the vectors are normalized. Another
possibility is to give states below the Fermi level a larger weight.

• The Hartree-Fock matrix simplifies then to (assuming that the coefficients
Ciα are real)

ĥHFαβ = εαδα,β +
A∑
j=1

∑
γδ

C
(0)
jγ C

(0)
jδ 〈αγ|v̂|βδ〉AS .

Hartree-Fock algorithm
Solving the Hartree-Fock eigenvalue problem yields then new eigenvectors

C
(1)
iα and eigenvalues εHF (1)

i .
• With the new eigenvalues we can set up a new Hartree-Fock potential

A∑
j=1

∑
γδ

C
(1)
jγ C

(1)
jδ 〈αγ|v̂|βδ〉AS .

The diagonalization with the new Hartree-Fock potential yields new eigenvectors
and eigenvalues. This process is continued till for example∑

p |ε
(n)
i − ε(n−1)

i |
m

≤ λ,

where λ is a user prefixed quantity (λ ∼ 10−8 or smaller) and p runs over all
calculated single-particle energies and m is the number of single-particle states.
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Analysis of Hartree-Fock equations and Koopman’s theo-
rem
We can rewrite the ground state energy by adding and subtracting ûHF (xi)

EHF0 = 〈Φ0|Ĥ|Φ0〉 =
A∑
i≤F

〈i|ĥ0+ûHF |j〉+1
2

A∑
i≤F

A∑
j≤F

[〈ij|v̂|ij〉 − 〈ij|v̂|ji〉]−
A∑
i≤F

〈i|ûHF |i〉,

which results in

EHF0 =
A∑
i≤F

εHFi + 1
2

A∑
i≤F

A∑
j≤F

[〈ij|v̂|ij〉 − 〈ij|v̂|ji〉]−
A∑
i≤F

〈i|ûHF |i〉.

Our single-particle states ijk . . . are now single-particle states obtained from the
solution of the Hartree-Fock equations.

Analysis of Hartree-Fock equations and Koopman’s theo-
rem
Using our definition of the Hartree-Fock single-particle energies we obtain

then the following expression for the total ground-state energy

EHF0 =
A∑
i≤F

εi −
1
2

A∑
i≤F

A∑
j≤F

[〈ij|v̂|ij〉 − 〈ij|v̂|ji〉] .

This form will be used in our discussion of Koopman’s theorem.

Analysis of Hartree-Fock equations and Koopman’s theo-
rem
Atomic physics case. We have

E[ΦHF(N)] =
H∑
i=1
〈i|ĥ0|i〉+ 1

2

N∑
ij=1
〈ij|v̂|ij〉AS ,

where ΦHF(N) is the new Slater determinant defined by the new basis of Eq. (??)
for N electrons (same Z). If we assume that the single-particle wave functions
in the new basis do not change when we remove one electron or add one electron,
we can then define the corresponding energy for the N − 1 systems as

E[ΦHF(N − 1)] =
N∑

i=1;i 6=k
〈i|ĥ0|i〉+ 1

2

N∑
ij=1;i,j 6=k

〈ij|v̂|ij〉AS ,

where we have removed a single-particle state k ≤ F , that is a state below the
Fermi level.
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Analysis of Hartree-Fock equations and Koopman’s theo-
rem
Calculating the difference

E[ΦHF(N)]−E[ΦHF(N−1)] = 〈k|ĥ0|k〉+
1
2

N∑
i=1;i 6=k

〈ik|v̂|ik〉AS
1
2

N∑
j=1;j 6=k

〈kj|v̂|kj〉AS ,

we obtain

E[ΦHF(N)]− E[ΦHF(N − 1)] = 〈k|ĥ0|k〉+ 1
2

N∑
j=1
〈kj|v̂|kj〉AS

which is just our definition of the Hartree-Fock single-particle energy

E[ΦHF(N)]− E[ΦHF(N − 1)] = εHF
k

Analysis of Hartree-Fock equations and Koopman’s theo-
rem
Similarly, we can now compute the difference (we label the single-particle

states above the Fermi level as abcd > F )

E[ΦHF(N + 1)]− E[ΦHF(N)] = εHF
a .

These two equations can thus be used to the electron affinity or ionization energies,
respectively. Koopman’s theorem states that for example the ionization energy of
a closed-shell system is given by the energy of the highest occupied single-particle
state. If we assume that changing the number of electrons from N to N + 1 does
not change the Hartree-Fock single-particle energies and eigenfunctions, then
Koopman’s theorem simply states that the ionization energy of an atom is given
by the single-particle energy of the last bound state. In a similar way, we can
also define the electron affinities.

Analysis of Hartree-Fock equations and Koopman’s theo-
rem
As an example, consider a simple model for atomic sodium, Na. Neutral

sodium has eleven electrons, with the weakest bound one being confined the 3s
single-particle quantum numbers. The energy needed to remove an electron from
neutral sodium is rather small, 5.1391 eV, a feature which pertains to all alkali
metals. Having performed a Hartree-Fock calculation for neutral sodium would
then allows us to compute the ionization energy by using the single-particle
energy for the 3s states, namely εHF

3s .
From these considerations, we see that Hartree-Fock theory allows us to make

a connection between experimental observables (here ionization and affinity
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energies) and the underlying interactions between particles. In this sense, we are
now linking the dynamics and structure of a many-body system with the laws of
motion which govern the system. Our approach is a reductionistic one, meaning
that we want to understand the laws of motion in terms of the particles or degrees
of freedom which we believe are the fundamental ones. Our Slater determinant,
being constructed as the product of various single-particle functions, follows this
philosophy.

Analysis of Hartree-Fock equations, Koopman’s theorem
With similar arguments as in atomic physics, we can now use Hartree-Fock

theory to make a link between nuclear forces and separation energies. Changing
to nuclear system, we define

E[ΦHF(A)] =
A∑
i=1
〈i|ĥ0|i〉+ 1

2

A∑
ij=1
〈ij|v̂|ij〉AS ,

where ΦHF(A) is the new Slater determinant defined by the new basis of Eq. (??)
for A nucleons, where A = N + Z, with N now being the number of neutrons
and Z th enumber of protons. If we assume again that the single-particle wave
functions in the new basis do not change from a nucleus with A nucleons to a
nucleus with A− 1 nucleons, we can then define the corresponding energy for
the A− 1 systems as

E[ΦHF(A− 1)] =
A∑

i=1;i 6=k
〈i|ĥ0|i〉+ 1

2

A∑
ij=1;i,j 6=k

〈ij|v̂|ij〉AS ,

where we have removed a single-particle state k ≤ F , that is a state below the
Fermi level.

Analysis of Hartree-Fock equations and Koopman’s theo-
rem
Calculating the difference

E[ΦHF(A)]−E[ΦHF(A−1)] = 〈k|ĥ0|k〉+
1
2

A∑
i=1;i 6=k

〈ik|v̂|ik〉AS
1
2

A∑
j=1;j 6=k

〈kj|v̂|kj〉AS ,

which becomes

E[ΦHF(A)]− E[ΦHF(A− 1)] = 〈k|ĥ0|k〉+ 1
2

A∑
j=1
〈kj|v̂|kj〉AS

which is just our definition of the Hartree-Fock single-particle energy

E[ΦHF(A)]− E[ΦHF(A− 1)] = εHF
k

19



Analysis of Hartree-Fock equations and Koopman’s theo-
rem
Similarly, we can now compute the difference (recall that the single-particle

states abcd > F )
E[ΦHF(A+ 1)]− E[ΦHF(A)] = εHF

a .

If we then recall that the binding energy differences

BE(A)−BE(A− 1) and BE(A+ 1)−BE(A),

define the separation energies, we see that the Hartree-Fock single-particle
energies can be used to define separation energies. We have thus our first link
between nuclear forces (included in the potential energy term) and an observable
quantity defined by differences in binding energies.

Analysis of Hartree-Fock equations and Koopman’s theo-
rem
We have thus the following interpretations (if the single-particle field do not

change)

BE(A)−BE(A− 1) ≈ E[ΦHF(A)]− E[ΦHF(A− 1)] = εHF
k ,

and
BE(A+ 1)−BE(A) ≈ E[ΦHF(A+ 1)]− E[ΦHF(A)] = εHF

a .

If we use 16O as our closed-shell nucleus, we could then interpret the separation
energy

BE(16O)−BE(15O) ≈ εHF
0pν1/2

,

and
BE(16O)−BE(15N) ≈ εHF

0pπ1/2
.

Analysis of Hartree-Fock equations and Koopman’s theo-
rem
Similalry, we could interpret

BE(17O)−BE(16O) ≈ εHF
0dν5/2

,

and
BE(17F)−BE(16O) ≈ εHF

0dπ5/2
.

We can continue like this for all A± 1 nuclei where A is a good closed-shell (or
subshell closure) nucleus. Examples are 22O, 24O, 40Ca, 48Ca, 52Ca, 54Ca, 56Ni,
68Ni, 78Ni, 90Zr, 88Sr, 100Sn, 132Sn and 208Pb, to mention some possile cases.
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Analysis of Hartree-Fock equations and Koopman’s theo-
rem

We can thus make our first interpretation of the separation energies in terms
of the simplest possible many-body theory. If we also recall that the so-called
energy gap for neutrons (or protons) is defined as

∆Sn = 2BE(N,Z)−BE(N − 1, Z)−BE(N + 1, Z),

for neutrons and the corresponding gap for protons

∆Sp = 2BE(N,Z)−BE(N,Z − 1)−BE(N,Z + 1),

we can define the neutron and proton energy gaps for 16O as

∆Sν = εHF
0dν5/2

− εHF
0pν1/2

,

and
∆Sπ = εHF

0dπ5/2
− εHF

0pπ1/2
.

Exercises: Derivation of Hartree-Fock equations
Exercise 1. Consider a Slater determinant built up of single-particle orbitals
ψλ, with λ = 1, 2, . . . , N .

The unitary transformation

ψa =
∑
λ

Caλφλ,

brings us into the new basis. The new basis has quantum numbers a = 1, 2, . . . , N .
Show that the new basis is orthonormal. Show that the new Slater determinant
constructed from the new single-particle wave functions can be written as the
determinant based on the previous basis and the determinant of the matrix C.
Show that the old and the new Slater determinants are equal up to a complex
constant with absolute value unity. (Hint, C is a unitary matrix).

Exercises: Derivation of Hartree-Fock equations
Exercise 2. Consider the Slater determinant

Φ0 = 1√
n!

∑
p

(−)pP
n∏
i=1

ψαi(xi).

A small variation in this function is given by

δΦ0 = 1√
n!

∑
p

(−)pPψα1(x1)ψα2(x2) . . . ψαi−1(xi−1)(δψαi(xi))ψαi+1(xi+1) . . . ψαn(xn).

Show that

〈δΦ0|
n∑
i=1
{t(xi) + u(xi)}+

1
2

n∑
i6=j=1

v(xi, xj)|Φ0〉 =
n∑
i=1
〈δψαi |t̂+û|φαi〉+

n∑
i 6=j=1

{
〈δψαiψαj |v̂|ψαiψαj 〉 − 〈δψαiψαj |v̂|ψαjψαi〉

}
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