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Many-body perturbation theory
We assume here that we are only interested in the ground state of the system
and expand the exact wave function in term of a series of Slater determinants

|Ψ0〉 = |Φ0〉+
∞∑

m=1
Cm|Φm〉,

where we have assumed that the true ground state is dominated by the solution
of the unperturbed problem, that is

Ĥ0|Φ0〉 = W0|Φ0〉.

The state |Ψ0〉 is not normalized, rather we have used an intermediate normal-
ization 〈Φ0|Ψ0〉 = 1 since we have 〈Φ0|Φ0〉 = 1.

The Schroedinger equation is

Ĥ|Ψ0〉 = E|Ψ0〉,

and multiplying the latter from the left with 〈Φ0| gives

〈Φ0|Ĥ|Ψ0〉 = E〈Φ0|Ψ0〉 = E,

and subtracting from this equation

〈Ψ0|Ĥ0|Φ0〉 = W0〈Ψ0|Φ0〉 = W0,

and using the fact that the both operators Ĥ and Ĥ0 are hermitian results in

∆E = E −W0 = 〈Φ0|ĤI |Ψ0〉,

which is an exact result. We call this quantity the correlation energy.



This equation forms the starting point for all perturbative derivations.
However, as it stands it represents nothing but a mere formal rewriting of
Schroedinger’s equation and is not of much practical use. The exact wave func-
tion |Ψ0〉 is unknown. In order to obtain a perturbative expansion, we need to
expand the exact wave function in terms of the interaction ĤI .

Here we have assumed that our model space defined by the operator P̂ is
one-dimensional, meaning that

P̂ = |Φ0〉〈Φ0|,

and

Q̂ =
∞∑

m=1
|Φm〉〈Φm|.

We can thus rewrite the exact wave function as

|Ψ0〉 = (P̂ + Q̂)|Ψ0〉 = |Φ0〉+ Q̂|Ψ0〉.

Going back to the Schrödinger equation, we can rewrite it as, adding and a
subtracting a term ω|Ψ0〉 as(

ω − Ĥ0

)
|Ψ0〉 =

(
ω − E + ĤI

)
|Ψ0〉,

where ω is an energy variable to be specified later.
We assume also that the resolvent of

(
ω − Ĥ0

)
exits, that is it has an inverse

which defined the unperturbed Green’s function as(
ω − Ĥ0

)−1
= 1(

ω − Ĥ0

) .

We can rewrite Schroedinger’s equation as

|Ψ0〉 = 1
ω − Ĥ0

(
ω − E + ĤI

)
|Ψ0〉,

and multiplying from the left with Q̂ results in

Q̂|Ψ0〉 = Q̂

ω − Ĥ0

(
ω − E + ĤI

)
|Ψ0〉,

which is possible since we have defined the operator Q̂ in terms of the eigenfunc-
tions of Ĥ.

These operators commute meaning that

Q̂
1(

ω − Ĥ0

) Q̂ = Q̂
1(

ω − Ĥ0

) = Q̂(
ω − Ĥ0

) .
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With these definitions we can in turn define the wave function as

|Ψ0〉 = |Φ0〉+ Q̂

ω − Ĥ0

(
ω − E + ĤI

)
|Ψ0〉.

This equation is again nothing but a formal rewrite of Schrödinger’s equation and
does not represent a practical calculational scheme. It is a non-linear equation in
two unknown quantities, the energy E and the exact wave function |Ψ0〉. We can
however start with a guess for |Ψ0〉 on the right hand side of the last equation.

The most common choice is to start with the function which is expected to
exhibit the largest overlap with the wave function we are searching after, namely
|Φ0〉. This can again be inserted in the solution for |Ψ0〉 in an iterative fashion
and if we continue along these lines we end up with

|Ψ0〉 =
∞∑

i=0

{
Q̂

ω − Ĥ0

(
ω − E + ĤI

)}i

|Φ0〉,

for the wave function and

∆E =
∞∑

i=0
〈Φ0|ĤI

{
Q̂

ω − Ĥ0

(
ω − E + ĤI

)}i

|Φ0〉,

which is now a perturbative expansion of the exact energy in terms of the
interaction ĤI and the unperturbed wave function |Ψ0〉.

In our equations for |Ψ0〉 and ∆E in terms of the unperturbed solutions |Φi〉
we have still an undetermined parameter ω and a dependecy on the exact energy
E. Not much has been gained thus from a practical computational point of view.

In Brilluoin-Wigner perturbation theory it is customary to set ω = E. This
results in the following perturbative expansion for the energy ∆E

∆E =
∞∑

i=0
〈Φ0|ĤI

{
Q̂

ω − Ĥ0

(
ω − E + ĤI

)}i

|Φ0〉 =

〈Φ0|

(
ĤI + ĤI

Q̂

E − Ĥ0
ĤI + ĤI

Q̂

E − Ĥ0
ĤI

Q̂

E − Ĥ0
ĤI + . . .

)
|Φ0〉.

∆E =
∞∑

i=0
〈Φ0|ĤI

{
Q̂

ω − Ĥ0

(
ω − E + ĤI

)}i

|Φ0〉 =

〈Φ0|

(
ĤI + ĤI

Q̂

E − Ĥ0
ĤI + ĤI

Q̂

E − Ĥ0
ĤI

Q̂

E − Ĥ0
ĤI + . . .

)
|Φ0〉.

This expression depends however on the exact energy E and is again not very
convenient from a practical point of view. It can obviously be solved iteratively,
by starting with a guess for E and then solve till some kind of self-consistency
criterion has been reached.
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Actually, the above expression is nothing but a rewrite again of the full
Schrödinger equation.

Defining e = E− Ĥ0 and recalling that Ĥ0 commutes with Q̂ by construction
and that Q̂ is an idempotent operator Q̂2 = Q̂. Using this equation in the above
expansion for ∆E we can write the denominator

Q̂
1

ê− Q̂ĤIQ̂
=

Q̂

[
1
ê

+ 1
ê

Q̂ĤIQ̂
1
ê

+ 1
ê

Q̂ĤIQ̂
1
ê

Q̂ĤIQ̂
1
ê

+ . . .

]
Q̂.

Inserted in the expression for ∆E leads to

∆E = 〈Φ0|ĤI + ĤIQ̂
1

E − Ĥ0 − Q̂ĤIQ̂
Q̂ĤI |Φ0〉.

In RS perturbation theory we set ω = W0 and obtain the following expression
for the energy difference

∆E =
∞∑

i=0
〈Φ0|ĤI

{
Q̂

W0 − Ĥ0

(
ĤI −∆E

)}i

|Φ0〉 =

〈Φ0|

(
ĤI + ĤI

Q̂

W0 − Ĥ0
(ĤI −∆E) + ĤI

Q̂

W0 − Ĥ0
(ĤI −∆E) Q̂

W0 − Ĥ0
(ĤI −∆E) + . . .

)
|Φ0〉.

Recalling that Q̂ commutes with Ĥ0 and since ∆E is a constant we obtain
that

Q̂∆E|Φ0〉 = Q̂∆E|Q̂Φ0〉 = 0.

Inserting this results in the expression for the energy results in

∆E = 〈Φ0|

(
ĤI + ĤI

Q̂

W0 − Ĥ0
ĤI + ĤI

Q̂

W0 − Ĥ0
(ĤI −∆E) Q̂

W0 − Ĥ0
ĤI + . . .

)
|Φ0〉.

We can now this expression in terms of a perturbative expression in terms of
ĤI where we iterate the last expression in terms of ∆E

∆E =
∞∑

i=1
∆E(i).

We get the following expression for ∆E(i)

∆E(1) = 〈Φ0|ĤI |Φ0〉,

which is just the contribution to first order in perturbation theory,

∆E(2) = 〈Φ0|ĤI
Q̂

W0 − Ĥ0
ĤI |Φ0〉,
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which is the contribution to second order.

∆E(3) = 〈Φ0|ĤI
Q̂

W0 − Ĥ0
ĤI

Q̂

W0 − Ĥ0
ĤIΦ0〉−〈Φ0|ĤI

Q̂

W0 − Ĥ0
〈Φ0|ĤI |Φ0〉

Q̂

W0 − Ĥ0
ĤI |Φ0〉,

being the third-order contribution.
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