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Introduction

Coester and Kummel first developed the ideas that led to
coupled-cluster theory in the late 1950s. The basic idea is that the
correlated wave function of a many-body system | Ψ〉 can be
formulated as an exponential of correlation operators T acting on a
reference state | Φ〉

| Ψ〉 = exp
(
−T̂

)
| Φ〉 .

We will discuss how to define the operators later in this work. This
simple ansatz carries enormous power. It leads to a
non-perturbative many-body theory that includes summation of
ladder diagrams , ring diagrams, and an infinite-order generalization
of many-body perturbation theory.
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Introduction

Developments and applications of coupled-cluster theory took
different routes in chemistry and nuclear physics. In quantum
chemistry, coupled-cluster developments and applications have
proven to be extremely useful, see for example the review by
Barrett and Musial as well as the recent textbook by Shavitt and
Barrett. Many previous applications to nuclear physics struggled
with the repulsive character of the nuclear forces and limited basis
sets used in the computations. Most of these problems have been
overcome during the last decade and coupled-cluster theory is one
of the computational methods of preference for doing nuclear
physics, with applications ranging from light nuclei to
medium-heavy nuclei, see for example the recent review by Hagen,
Papenbrock, Hjorth-Jensen and Dean.

http://journals.aps.org/rmp/abstract/10.1103/RevModPhys.79.291
http://www.cambridge.org/fr/academic/subjects/chemistry/physical-chemistry/many-body-methods-chemistry-and-physics-mbpt-and-coupled-cluster-theory?format=HB
http://www.cambridge.org/fr/academic/subjects/chemistry/physical-chemistry/many-body-methods-chemistry-and-physics-mbpt-and-coupled-cluster-theory?format=HB
http://iopscience.iop.org/0034-4885/77/9/096302
http://iopscience.iop.org/0034-4885/77/9/096302


A non-practical way of solving the eigenvalue problem

Before we proceed with the derivation of the Coupled cluster
equations, let us repeat some of the arguments we presented during
our FCI lectures. In our FCI discussions, we rewrote the solution of
the Schroedinger equation as a set of coupled equationsin the
unknown coefficients C . Let us repeat some of these arguments.
To obtain the eigenstates and eigenvalues in terms of non-linear
equations is not a very practical approach. However, it serves the
scope of linking FCI theory with approximative solutions to the
many-body problem like Coupled cluster (CC) theory



A non-practical way of solving the eigenvalue problem

If we assume that we have a two-body operator at most, the
Slater-Condon rule gives then an equation for the correlation energy
in terms of C a

i and C ab
ij only. We get then

〈Φ0|Ĥ−E |Φ0〉+
∑
ai

〈Φ0|Ĥ−E |Φa
i 〉C a

i +
∑
abij

〈Φ0|Ĥ−E |Φab
ij 〉C ab

ij = 0,

or

E − E0 = ∆E =
∑
ai

〈Φ0|Ĥ|Φa
i 〉C a

i +
∑
abij

〈Φ0|Ĥ|Φab
ij 〉C ab

ij ,

where the energy E0 is the reference energy and ∆E defines the
so-called correlation energy. The single-particle basis functions
could be the results of a Hartree-Fock calculation or just the
eigenstates of the non-interacting part of the Hamiltonian.



A non-practical way of solving the eigenvalue problem

In our notes on Hartree-Fock calculations, we have already
computed the matrix 〈Φ0|Ĥ|Φa

i 〉 and 〈Φ0|Ĥ|Φab
ij 〉. If we are using a

Hartree-Fock basis, then the matrix elements 〈Φ0|Ĥ|Φa
i 〉 = 0 and

we are left with a correlation energy given by

E − E0 = ∆EHF =
∑
abij

〈Φ0|Ĥ|Φab
ij 〉C ab

ij .



A non-practical way of solving the eigenvalue problem
Inserting the various matrix elements we can rewrite the previous
equation as

∆E =
∑
ai

〈i |f̂ |a〉C a
i +

∑
abij

〈ij |v̂ |ab〉C ab
ij .

This equation determines the correlation energy but not the
coefficients C . We need more equations. Our next step is to set up

〈Φa
i |Ĥ−E |Φ0〉+

∑
bj

〈Φa
i |Ĥ−E |Φb

j 〉Cb
j +
∑
bcjk

〈Φa
i |Ĥ−E |Φbc

jk 〉Cbc
jk +

∑
bcdjkl

〈Φa
i |Ĥ−E |Φbcd

jkl 〉Cbcd
jkl = 0,

as this equation will allow us to find an expression for the
coefficents C a

i since we can rewrite this equation as

〈i |f̂ |a〉+〈Φa
i |Ĥ|Φa

i 〉C a
i +
∑
bj 6=ai

〈Φa
i |Ĥ|Φb

j 〉Cb
j +
∑
bcjk

〈Φa
i |Ĥ|Φbc

jk 〉Cbc
jk +

∑
bcdjkl

〈Φa
i |Ĥ|Φbcd

jkl 〉Cbcd
jkl = EC a

i .



A non-practical way of solving the eigenvalue problem

We see that on the right-hand side we have the energy E . This
leads to a non-linear equation in the unknown coefficients. These
equations are normally solved iteratively ( that is we can start with
a guess for the coefficients C a

i ). A common choice is to use
perturbation theory for the first guess, setting thereby

C a
i =

〈i |f̂ |a〉
εi − εa

.

The observant reader will however see that we need an equation for
Cbc
jk and Cbcd

jkl as well. To find equations for these coefficients we
need then to continue our multiplications from the left with the
various ΦP

H terms.



A non-practical way of solving the eigenvalue problem

For Cbc
jk we need then

〈Φab
ij |Ĥ − E |Φ0〉+

∑
kc

〈Φab
ij |Ĥ − E |Φc

k〉C c
k +

∑
cdkl

〈Φab
ij |Ĥ−E |Φcd

kl 〉C cd
kl +

∑
cdeklm

〈Φab
ij |Ĥ−E |Φcde

klm〉C cde
klm+

∑
cdefklmn

〈Φab
ij |Ĥ−E |Φcdef

klmn〉C cdef
klmn = 0,

and we can isolate the coefficients C cd
kl in a similar way as we did for

the coefficients C a
i . A standard choice for the first iteration is to set

C ab
ij =

〈ij |v̂ |ab〉
εi + εj − εa − εb

.



A non-practical way of solving the eigenvalue problem

At the end we can rewrite our solution of the Schroedinger
equation in terms of n coupled equations for the coefficients CP

H .
This is a very cumbersome way of solving the equation. However,
by using this iterative scheme we can illustrate how we can
compute the various terms in the wave operator or correlation
operator Ĉ . We will later identify the calculation of the various
terms CP

H as parts of different many-body approximations to full CI.
In particular, we can relate this non-linear scheme with Coupled
Cluster theory and many-body perturbation theory.



Summarizing FCI and bringing in approximative methods

If we can diagonalize large matrices, FCI is the method of choice
since:

I It gives all eigenvalues, ground state and excited states
I The eigenvectors are obtained directly from the coefficients

CP
H which result from the diagonalization

I We can compute easily expectation values of other operators,
as well as transition probabilities

I Correlations are easy to understand in terms of contributions
to a given operator beyond the Hartree-Fock contribution.
This is the standard approach in many-body theory.



Summarizing FCI and bringing in approximative methods

The correlation energy is defined as, with a two-body Hamiltonian,

∆E =
∑
ai

〈i |f̂ |a〉C a
i +

∑
abij

〈ij |v̂ |ab〉C ab
ij .

The coefficients C result from the solution of the eigenvalue
problem. The energy of say the ground state is then

E = Eref + ∆E ,

where the so-called reference energy is the energy we obtain from a
Hartree-Fock calculation, that is

Eref = 〈Φ0|Ĥ|Φ0〉.



Summarizing FCI and bringing in approximative methods

However, as we have seen, even for a small case like the four first
major shells and a nucleus like oxygen-16, the dimensionality
becomes quickly intractable. If we wish to include single-particle
states that reflect weakly bound systems, we need a much larger
single-particle basis. We need thus approximative methods that
sum specific correlations to infinite order.
Popular methods are

I Many-body perturbation theory (in essence a Taylor expansion)
I Coupled cluster theory (coupled non-linear equations)
I Green’s function approaches (matrix inversion)
I Similarity group transformation methods (coupled ordinary

differential equations)
All these methods start normally with a Hartree-Fock basis as the
calculational basis.

http://www.sciencedirect.com/science/journal/03701573/261/3-4
http://iopscience.iop.org/0034-4885/77/9/096302
http://www.worldscientific.com/worldscibooks/10.1142/6821
http://journals.aps.org/prc/abstract/10.1103/PhysRevC.85.061304
http://journals.aps.org/prc/abstract/10.1103/PhysRevC.85.061304


A quick tour of Coupled Cluster theory

The ansatz for the wavefunction (ground state) is given by

|Ψ〉 = |ΨCC 〉 = eT̂ |Φ0〉 =

(
A∑

n=1

1
n!
T̂ n

)
|Φ0〉,

where A represents the maximum number of particle-hole
excitations and T̂ is the cluster operator defined as

T̂ = T̂1 + T̂2 + . . .+ T̂A

T̂n =

(
1
n!

)2 ∑
i1,i2,...in
a1,a2,...an

ta1a2...an
i1i2...in

a†a1
a†a2

. . . a†anain . . . ai2ai1 .



A quick tour of Coupled Cluster theory

The energy is given by

ECC = 〈Φ0|H|Φ0〉,

where H is a similarity transformed Hamiltonian

H = e−T̂ ĤNe
T̂

ĤN = Ĥ − 〈Φ0|Ĥ|Φ0〉.



A quick tour of Coupled Cluster theory

The coupled cluster energy is a function of the unknown cluster
amplitudes ta1a2...an

i1i2...in
, given by the solutions to the amplitude

equations
0 = 〈Φa1...an

i1...in
|H|Φ0〉.

The similarity transformed Hamiltonian H is expanded using the
Baker-Campbell-Hausdorff expression,

H = ĤN +
[
ĤN , T̂

]
+

1
2

[[
ĤN , T̂

]
, T̂
]

+ . . .

1
n!

[
. . .
[
ĤN , T̂

]
, . . . T̂

]
+ . . .

and simplified using the connected cluster theorem

H = ĤN +
(
ĤN T̂

)
c

+
1
2

(
ĤN T̂

2
)
c

+ · · ·+ 1
n!

(
ĤN T̂

n
)
c

+ . . .



A quick tour of Coupled Cluster theory

A much used approximation is to truncate the cluster operator T̂ at
the n = 2 level. This defines the so-called singes and doubles
approximation to the Coupled Cluster wavefunction, normally
shortened to CCSD..
The coupled cluster wavefunction is now given by

|ΨCC 〉 = eT̂1+T̂2 |Φ0〉

where

T̂1 =
∑
ia

tai a
†
aai

T̂2 =
1
4

∑
ijab

tabij a†aa
†
bajai .



A quick tour of Coupled Cluster theory

The amplutudes t play a role similar to the coefficients C in the
shell-model calculations. They are obtained by solving a set of
non-linear equations similar to those discussed above in connection
withe FCI discussion.
If we truncate our equations at the CCSD level, it corresponds to
performing a transformation of the Hamiltonian matrix of the
following type for a six particle problem (with a two-body
Hamiltonian):

0p − 0h 1p − 1h 2p − 2h 3p − 3h 4p − 4h 5p − 5h 6p − 6h
0p − 0h x̃ x̃ x̃ 0 0 0 0
1p − 1h 0 x̃ x̃ x̃ 0 0 0
2p − 2h 0 x̃ x̃ x̃ x̃ 0 0
3p − 3h 0 x̃ x̃ x̃ x̃ x̃ 0
4p − 4h 0 0 x̃ x̃ x̃ x̃ x̃
5p − 5h 0 0 0 x̃ x̃ x̃ x̃
6p − 6h 0 0 0 0 x̃ x̃ x̃



A quick tour of Coupled Cluster theory

In our FCI discussion the correlation energy is defined as, with a
two-body Hamiltonian,

∆E =
∑
ai

〈i |f̂ |a〉C a
i +

∑
abij

〈ij |v̂ |ab〉C ab
ij .

In Coupled cluster theory it becomes (irrespective of level of
truncation of T )

∆E =
∑
ai

〈i |f̂ |a〉tai +
∑
abij

〈ij |v̂ |ab〉tabij .



A quick tour of Coupled Cluster theory
Coupled cluster theory has several interesting computational
features and is the method of choice in quantum chemistry. The
method was originally proposed by Coester and Kummel, two
nuclear physicists (way back in the fifties). It came back in full
strength in nuclear physics during the last decade.
There are several interesting features:

I With a truncation like CCSD or CCSDT, we can include to
infinite order correlations like 2p − 2h.

I We can include a large basis of single-particle states, not
possible in standard FCI calculations

However, Coupled Cluster theory is
I non-variational
I if we want to find properties of excited states, additional

calculations via for example equation of motion methods are
needed

I if correlations are strong, a single-reference ansatz may not be
the best starting point

I we cannot quantify properly the error we make when
truncations are made in the cluster operator



The CCD approximation

We will now approximate the cluster operator T̂ to include only
2p − 2h correlations. This leads to the so-called CCD
approximation, that is

T̂ ≈ T̂2 =
1
4

∑
abij

tabij a†aa
†
bajai ,

meaning that we have

|Ψ0〉 ≈ |ΨCCD〉 = exp
(
T̂2

)
|Φ0〉.



The CCD approximation

Inserting these equations in the expression for the computation of
the energy we have, with a Hamiltonian defined with respect to a
general vacuum (see the exercises in the second quantization part)

Ĥ = ĤN + Eref ,

with
ĤN =

∑
pq

〈p|f̂ |q〉a†paq +
1
4

∑
pqrs

〈pq|v̂ |rs〉a†pa†qasar ,

we obtain that the energy can be written as

〈Φ0| exp−
(
T̂2

)
ĤN exp

(
T̂2

)
|Φ0〉 = 〈Φ0|ĤN(1 + T̂2)|Φ0〉 = ECCD .



The CCD approximation

This quantity becomes

ECCD = Eref +
1
4

∑
abij

〈ij |v̂ |ab〉tabij ,

where the latter is the correlation energy from this level of
approximation of CC theory. Similarly, the expression for the
amplitudes reads

〈Φab
ij | exp−

(
T̂2

)
ĤN exp

(
T̂2

)
|Φ0〉 = 0.



The CCD approximation
These equations can be reduced to (after several applications of
Wick’s theorem) to, for all i > j and all a > b,

0 = 〈ab|v̂ |ij〉+ (εa + εb − εi − εj) tabij

+
1
2

∑
cd

〈ab|v̂ |cd〉tcdij +
1
2

∑
kl

〈kl |v̂ |ij〉tabkl + P̂(ij |ab)
∑
kc

〈kb|v̂ |cj〉tacik

+
1
4

∑
klcd

〈kl |v̂ |cd〉tcdij tabkl + P̂(ij)
∑
klcd

〈kl |v̂ |cd〉tacik tbdjl

−1
2
P̂(ij)

∑
klcd

〈kl |v̂ |cd〉tdcik tablj −
1
2
P̂(ab)

∑
klcd

〈kl |v̂ |cd〉taclk tdbij ,

(1)

where we have defined

P̂ (ab) = 1− P̂ab,

where P̂ab interchanges two particles occupying the quantum
numbers a and b.



The CCD approximation

The operator P̂(ij |ab) is defined as

P̂(ij |ab) = (1− P̂ij)(1− P̂ab).

Recall also that the unknown amplitudes tabij represent
anti-symmetrized matrix elements, meaning that they obey the
same symmetry relations as the two-body interaction, that is

tabij = −tabji = −tbaij = tbaji .

The two-body matrix elements are also anti-symmetrized, meaning
that

〈ab|v̂ |ij〉 = −〈ab|v̂ |ji〉 = −〈ba|v̂ |ij〉 = 〈ba|v̂ |ji〉.

The non-linear equations for the unknown amplitudes tabij are solved
iteratively. We discuss the implementation of these equations
below.



Approximations to the full CCD equations
It is useful to make approximations to the equations for the
amplitudes. The standard method for solving these equations is to
set up an iterative scheme where method’s like Newton’s method or
similar root searching methods are used to find the amplitudes.
Itreative solvers need a guess for the amplitudes. A good starting
point is to use the correlated wave operator from perturbation
theory to first order in the interaction. This means that we define
the zeroth approximation to the amplitudes as

t(0) =
〈ab|v̂ |ij〉

(εi + εj − εa − εb)
,

leading to our first approximation for the correlation energy at the
CCD level to be equal to second-order perturbation theory without
1p − 1h excitations, namely

∆E
(0)
CCD =

1
4

∑
abij

〈ij |v̂ |ab〉〈ab|v̂ |ij〉
(εi + εj − εa − εb)

.



Approximations to the full CCD equations

With this starting point, we are now ready to solve Eq. (1)
iteratively. Before we attack the full equations, it is however
instructive to study a truncated version of the equations. We will
first study the following approximation where we take away all
terms except the linear terms that involve the single-particle
energies and the the two-particle intermediate excitations, that is

0 = 〈ab|v̂ |ij〉+ (εa + εb − εi − εj) tabij +
1
2

∑
cd

〈ab|v̂ |cd〉tcdij . (2)



Approximations to the full CCD equations
Setting the single-particle energies for the hole states equal to an
energy variable ω = εi + εj , Eq. (2) reduces to the well-known
equations for the so-called G -matrix, widely used in infinite matter
and finite nuclei studies. The equation can then be reordered and
solved by matrix inversion. To see this let us define the following
quantity

τ abij = (ω − εa − εb) tabij ,

and inserting

1 =
(ω − εc − εd)

(ω − εc − εd)
,

in the intermediate sums over cd in Eq. (2), we can rewrite the
latter equation as

τ abij (ω) = 〈ab|v̂ |ij〉+
1
2

∑
cd

〈ab|v̂ |cd〉 1
ω − εc − εd

τ cdij (ω),

where we have indicated an explicit energy dependence. This
equation, transforming a two-particle configuration into a single
index, can be transformed into a matrix inversion problem. Solving
the equations for a fixed energy ω allows us to compare directly
with results from Green’s function theory when only two-particle
intermediate states are included.

http://www.sciencedirect.com/science/journal/03701573/261/3-4
http://www.sciencedirect.com/science/journal/03701573/261/3-4


Approximations to the full CCD equations

To solve Eq. (2), we would thus start with a guess for the unknown
amplitudes, typically using the wave operator defined by first order
in perturbation theory, leading to a zeroth approximation to the
energy given by second-order perturbation theory for the correlation
energy. A simple approach to the solution of Eq. (2), is to thus to
1. Start with a guess for the amplitudes and compute the zeroth

approximation to the correlation energy
2. Use the ansatz for the amplitudes to solve Eq. (2) via for

example your root-finding method of choice (Newton’s method
or modifications thereof can be used) and continue these
iterations till the correlation energy does not change more than
a prefixed quantity λ; ∆E

(i)
CCD −∆E

(i−1)
CCD ≤ λ.

3. It is common during the iterations to scale the amplitudes with
a parameter α, with α ∈ (0, 1] as t(i) = αt(i) + (1− α)t(i−1).



Approximations to the full CCD equations

The next approximation is to include the two-hole term in Eq. (1),
a term which allow us to make a link with Green’s function theory
with two-particle and two-hole correlations. This means that we
solve

0 = 〈ab|v̂ |ij〉+(εa + εb − εi − εj) tabij +
1
2

∑
cd

〈ab|v̂ |cd〉tcdij +
1
2

∑
kl

〈kl |v̂ |ij〉tabkl .

(3)
This equation is solved the same way as we would do for Eq. (2).
The final step is then to include all terms in Eq. (1).



Introduction to studies of infinite matter

Studies of infinite nuclear matter play an important role in nuclear
physics. The aim of this part of the lectures is to provide the
necessary ingredients for perfoming studies of neutron star matter
(or matter in β-equilibrium) and symmetric nuclear matter.
Here we will study infinite neutron matter

I at the Hartree-Fock with realistic nuclear forces and
I using many-body methods like coupled-cluster theory or

many-body perturbation theory



Infinite nuclear matter and neutron star matter

Studies of dense baryonic matter are of central importance to our
basic understanding of the stability of nuclear matter, spanning
from matter at high densities and temperatures to matter as found
within dense astronomical objects like neutron stars.
Neutron star matter at densities of 0.1 fm−3 and greater, is often
assumed to be made of mainly neutrons, protons, electrons and
muons in beta equilibrium. However, other baryons like various
hyperons may exist, as well as possible mesonic condensates and
transitions to quark degrees of freedom at higher densities. Here we
focus on specific definitions of various phases and focus on distinct
phases of matter such as pure baryonic matter and/or quark
matter. The composition of matter is then determined by the
requirements of chemical and electrical equilibrium. Furthermore,
we will also consider matter at temperatures much lower than the
typical Fermi energies.



Properties of infinite nuclear matter
The equilibrium conditions are governed by the weak processes
(normally referred to as the processes for β-equilibrium)

b1 → b2 + l + ν̄l b2 + l → b1 + νl , (4)

where b1 and b2 refer to for example the baryons being a neutron
and a proton, respectively, l is either an electron or a muon and ν̄l
and νl their respective anti-neutrinos and neutrinos. Muons
typically appear at a density close to nuclear matter saturation
density, the latter being

n0 ≈ 0.16± 0.02 fm−3,

with a corresponding binding energy E0 for symmetric nuclear
matter (SNM) at saturation density of

E0 = B/A = −15.6± 0.2 MeV.



The infinite neutron gas as a homogenous system

This is a homogeneous system and the one-particle wave functions
are given by plane wave functions normalized to a volume Ω for a
box with length L (the limit L→∞ is to be taken after we have
computed various expectation values)

ψkσ(r) =
1√
Ω

exp (ikr)ξσ

where k is the wave number and ξσ is a spin function for either spin
up or down

ξσ=+1/2 =

(
1
0

)
ξσ=−1/2 =

(
0
1

)
.



Periodic boundary conditions and single-particle states

When using periodic boundary conditions, the discrete-momentum
single-particle basis functions

φk(r) = e ik·r/Ld/2

are associated with the single-particle energy

εnx ,ny =
~2

2m

(
2π
L

)2 (
n2
x + n2

y

)
(5)

for two-dimensional sytems and

εnx ,ny ,nz =
~2

2m

(
2π
L

)2 (
n2
x + n2

y + n2
z

)
(6)

for three-dimensional systems.



More on periodic boundary conditions and single-particle
states

The table on the next slide illustrates how single-particle energies
fill energy shells in a two-dimensional neutron box. Here nx and ny
are the momentum quantum numbers, n2

x + n2
y determines the

single-particle energy level, N↑↓ represents the cumulated number of
spin-orbitals in an unpolarized spin phase, and N↑↑ stands for the
cumulated number of spin-orbitals in a spin-polarized system.



Magic numbers for the two-dimensional neutron (or
electron) gas

n2
x + n2

y nx ny N↑↓ N↑↑
0 0 0 2 1
1 -1 0

1 0
0 -1
0 1 10 5

2 -1 -1
-1 1
1 -1
1 1 18 9

4 -2 0
2 0
0 -2
0 2 26 13

5 -2 -1
2 -1
-2 1
2 1
-1 -2
-1 2
1 -2
1 2 42 21



Three-dimensional neutron gas

Using the same approach as made with the two-dimensional
electron gas with the single-particle kinetic energy defined as

~2

2m

(
k2
nx + k2

ny k
2
nz

)
,

and
kni =

2πni
L

ni = 0,±1,±2, . . . ,

we can set up a similar table and obtain (assuming identical
particles one and including spin up and spin down solutions) for
energies less than or equal to n2

x + n2
y + n2

z ≤ 3



Single-particle states for the three-dimensional neutron gas
n2
x + n2

y + n2
z nx ny nz N↑↓

0 0 0 0 2
1 -1 0 0
1 1 0 0
1 0 -1 0
1 0 1 0
1 0 0 -1
1 0 0 1 14
2 -1 -1 0
2 -1 1 0
2 1 -1 0
2 1 1 0
2 -1 0 -1
2 -1 0 1
2 1 0 -1
2 1 0 1
2 0 -1 -1
2 0 -1 1
2 0 1 -1
2 0 1 1 38
3 -1 -1 -1
3 -1 -1 1
3 -1 1 -1
3 -1 1 1
3 1 -1 -1
3 1 -1 1
3 1 1 -1
3 1 1 1 54

Continuing in this way we get for n2
x + n2

y + n2
z = 4 a total of 12

additional states, resulting in ? as a new magic number. We can
continue like this by adding more shells.
When performing calculations based on many-body perturbation
theory, Coupled cluster theory or other many-body methods, we
need then to add states above the Fermi level in order to sum over
single-particle states which are not occupied.



Input parameters
Every number of particles for filled shells defines also the number of
particles to be used in a given calculation. We use the number of
particles to define the density of the system

ρ = g
k3
F

6π2 ,

where you need to define kF and the degeneracy g , which is two for
one type of spin-1/2 particles and four for symmetric nuclear
matter.
With the density we can define the length L of the box used with
periodic boundary contributions, that is use the relation

V = L3 =
A

ρ
.

Finally we can use L to define the spacing to set up the spacing
between varipus k-values, that is

∆k =
2π
L
.

Here, A can be the number of nucleons.



Potential model employed in code development
The interaction we will use for these calculations is a semirealistic
nucleon-nucleon potential known as the Minnesota potential

Vα (r) = Vα exp (−αr2).

The spin and isospin dependence of the Minnesota potential is
given by

V (r) =
1
2

(
VR +

1
2

(1 + Pσ12)VT +
1
2

(1− Pσ12)VS

)
(1− Pσ12P

τ
12) ,

(7)
where

Pσ12 =
1
2

(1 + σ1 · σ2) ,

and
Pτ12 =

1
2

(1 + τ1 · τ2)

are the spin and isospin exchange operators, respectively.



Fourier transform

A Fourier transform to momentum space of the radial part

Vα (r)

is rather simple since the radial depends only on the magnitude of
the relative distance and thereby the relative momentum

q =
1
2

(kp − kq − kr + ks)

Omitting spin and isospin dependencies, the momentum space
version of the interaction reads

〈kpkq|Vα|krks〉 =
Vα
L3

(π
α

)3/2
exp (

−q2

4α
)δkp+kq ,kr+ks (8)



Developing a program for infinite matter

I Structure a code in terms of functions.
I Modularize your codes.
I Be able to read input data flexibly.
I Write unit tests (test functions) and let your code undergo

heavy testing.
I Refactor code in terms of classes (instead of functions only).
I Conduct and automate large-scale numerical experiments.
I New code is added in a modular fashion to a library (modules).
I Programs are run through convenient user interfaces.
I Use scripts in order to automatize tedious manual work.
I Make sure your scientific investigations are reproducible and

document properly your results.
I Use version control software like for example git



Codes and reading material

I The codes are all available from the coming Lectures Notes in
Physics volume An advanced course in computational nuclear
physics: Bridging the scales from quarks to neutron stars, M.
Hjorth-Jensen, M. P. Lombardo, U. van Kolck, Editors

I For more reading on CCD see chapter 8 of the coming
Lectures Notes in Physics volume An advanced course in
computational nuclear physics: Bridging the scales from quarks
to neutron stars, M. Hjorth-Jensen, M. P. Lombardo, U. van
Kolck, Editors

https://github.com/ManyBodyPhysics/LectureNotesPhysics/tree/master/doc/src/Chapter8-programs
https://github.com/ManyBodyPhysics/LectureNotesPhysics/tree/master/doc/src/Chapter8-programs
https://github.com/ManyBodyPhysics/LectureNotesPhysics/tree/master/doc/src/Chapter8-programs
https://github.com/ManyBodyPhysics/LectureNotesPhysics/tree/master/doc/src/lnp.pdf
https://github.com/ManyBodyPhysics/LectureNotesPhysics/tree/master/doc/src/lnp.pdf
https://github.com/ManyBodyPhysics/LectureNotesPhysics/tree/master/doc/src/lnp.pdf
https://github.com/ManyBodyPhysics/LectureNotesPhysics/tree/master/doc/src/lnp.pdf


The CCD equation
The CCD equations can be written as

(εi + εj − εa − εb) tabij = 〈ab|v̂ |ij〉

+
1
2

∑
cd

〈ab|v̂ |cd〉tcdij +
1
2

∑
kl

〈kl |v̂ |ij〉tabkl + P̂(ij |ab)
∑
kc

〈kb|v̂ |cj〉tacik

+
1
4

∑
klcd

〈kl |v̂ |cd〉tcdij tabkl + P̂(ij)
∑
klcd

〈kl |v̂ |cd〉tacik tbdjl

−1
2
P̂(ij)

∑
klcd

〈kl |v̂ |cd〉tdcik tablj −
1
2
P̂(ab)

∑
klcd

〈kl |v̂ |cd〉taclk tdbij ,

(9)

for all i < j and all a < b, using the standard notation that a, b, ...
are particle states and i , j , ... are hole states. With the CCD
correlation energy given by

∆ECCD =
1
4

∑
ijab

〈ij |v̂ |ab〉tabij . (10)



Solving the CCD equations
One way to solve these equations, is to write equation (3) as a
series of iterative nonlinear algebraic equations

tabij
(n+1) =

1
εabij

(
〈ab|v̂ |ij〉

+
1
2

∑
cd

〈ab|v̂ |cd〉tcdij (n) +
1
2

∑
kl

〈kl |v̂ |ij〉tabkl (n) + P̂(ij |ab)
∑
kc

〈kb|v̂ |cj〉tacik (n)

+
1
4

∑
klcd

〈kl |v̂ |cd〉tcdij (n)tabkl
(n) + P̂(ij)

∑
klcd

〈kl |v̂ |cd〉tacik (n)tbdjl
(n)

−1
2
P̂(ij)

∑
klcd

〈kl |v̂ |cd〉tdcik (n)tablj
(n) − 1

2
P̂(ab)

∑
klcd

〈kl |v̂ |cd〉taclk (n)tdbij
(n)

)
,

(11)

for all i < j and all a < b, where εabij = (εi + εj − εa − εb), and
tabij

(n) is the t amplitude for the nth iteration of the series. This
way, given some starting guess tabij

(0), we can generate subsequent t
amplitudes that converges to some value.



Memory considerations
Care should thus be placed into how we store these objects. These
are objects with four indices and a sensible first implementation of
the CCD equations would be to create two four-dimensional arrays
to store the objects. However, it is often more convenient to work
with simple one-dimensional arrays instead.
The goal of our code is to calculate the correlation energy, ∆ECCD ,
meaning that after each iteration of our equations, we use our
newest t amplitudes to update the correlation energy

∆E
(n)
CCD =

1
4

∑
ijab

〈ij |v̂ |ab〉tabij (n). (12)

We check that our result is converged by testing whether the most
recent iteration has changed the correlation energy by less than
some tolerance threshold η,

η > |∆E
(n+1)
CCD −∆E

(n)
CCD |. (13)



More on memory

One limitation that will be ran into while trying to do realistic CCD
calculations is that of memory. The four-indexed two-body matrix
elements (TBMEs) and t-amplitudes have to store a lot of
elements, and the size of these arrays can quickly exceed the
available memory on a machine. If a calculation wants to use 500
single-particle basis states, then a structure like 〈pq|v |rs〉 will need
a length of 500 for each of its four indices, which means it will have
5004 = 625× 108 elements. To get a handle on how much memory
is used, consider the elements as double-precision floating point
type. One double takes up 8 bytes of memory. This specific array
would take up 8× 625× 108 bytes = 5000× 108 bytes = 500
Gbytes of memory.



Using symmetries
Most personal computers in 2016 have 4-8 Gbytes of RAM,
meaning that this calculation would be way out of reach. There are
supercomputers that can handle applications using 500 Gbytes of
memory, but we can quickly reduce the total memory required by
applying some physical arguments. In addition to vanishing
elements with repeated indices, mentioned above, elements that do
not obey certain symmetries are also zero. Almost all realistic
two-body forces preserve some quantities due to symmetries in the
interaction. For example, an interaction with rotational symmetry
will conserve angular momentum. This means that a two-body ket
state |rs〉, which has some set of quantum numbers, will retain
quantum numbers corresponding to the interaction symmetries
after being acted on by v̂ . This state is then projected onto |pq〉
with its own set of quantum numbers. Thus 〈pq|v |rs〉 is only
non-zero if |pq〉 and |rs〉 share the same quantum numbers that are
preserved by v̂ . In addition, because the cluster operators represent
excitations due to the interaction, tabij is only non-zero if |ij〉 has
the same relevant quantum numbers as |ab〉.



Using symmetries II

To take advantage of this, these two-body ket states can be
organized into “channels” of shared quantum numbers. In the case
of the pairing model, the interaction preserves the total spin
projection of a two-body state, Sz = sz1 + sz2. The single particle
states can have spin of +1/2 or -1/2, so there can be three
two-body channels with Sz = −1, 0,+1. These channels can then
be indexed with a unique label in a similar way to the single particle
index scheme. In more complicated systems, there will be many
more channels involving multiple symmetries, so it is useful to
create a data structure that stores the relevant two-body quantum
numbers to keep track of the labeling scheme.



Using symmetries III

It is more efficient to use two-dimensional array data structures,
where the first index refers to the channel number and the second
refers to the element within that channel. So to access matrix
elements or t amplitudes, you can loop over the channels first, then
the indices within that channel. To get an idea of the savings using
this block diagonal structure, let’s look at a case with a plane wave
basis, with three momentum and one spin quantum numbers, with
an interaction that conserves linear momentum in all three
dimensions, as well as the total spin projection. Using 502 basis
states, the TBME’s require about 0.23 Gb of memory in block
diagonal form, which is an enormous saving from the 500 Gb
mentioned earlier in the naïve storage scheme.



Using intermediates
Since the calculation of all zeros can now be avoided, improvements
in speed and memory will now follow. To get a handle on how
these CCD calculations are implemented we need only to look at
the most expensive sum in equation (3). This corresponds to the
sum over klcd . Since this sum is repeated for all i < j and a < b, it
means that these equations will scale as O(n4

pn
4
h). However, they

can be rewritten using intermediates as

0 = 〈ab|v̂ |ij〉+ P̂(ab)
∑
c

〈b|χ|c〉〈ac|t|ij〉 − P̂(ij)
∑
k

〈k |χ|j〉〈ab|t|ik〉

+
1
2

∑
cd

〈ab|χ|cd〉〈cd |t|ij〉+
1
2

∑
kl

〈ab|t|kl〉〈kl |χ|ij〉

(14)

+P̂(ij)P̂(ab)
∑
kc

〈ac|t|ik〉〈kb|χ|cj〉

for all i , j , a, b.



Defining intermediates

The intermediates χ are defined as

〈b|χ|c〉 = 〈b|f |c〉 − 1
2

∑
kld

〈bd |t|kl〉〈kl |v |cd〉 (15)

〈k |χ|j〉 = 〈k |f |j〉+
1
2

∑
cdl

〈kl |v |cd〉〈cd |t|jl〉 (16)

〈kl |χ|ij〉 = 〈kl |v |ij〉+
1
2

∑
cd

〈kl |v |cd〉〈cd |t|ij〉 (17)

〈kb|χ|cj〉 = 〈kb|v |cj〉+
1
2

∑
dl

〈kl |v |cd〉〈db|t|lj〉 (18)

〈ab|χ|cd〉 = 〈ab|v |cd〉 (19)

With the introduction of the above intermediates, the CCD
equations scale now as O(n2

hn
4
p).



Speed up
To further speed up these computations, we see that these sums
can be written in terms of matrix-matrix multiplications. It is not
obvious how to write all of these sums in such a way, but it is useful
to first recall that the expression for the multiplication of two
matrices Ĉ = Â× B̂ can be written as

Cij =
∑
k

Aik × Bkj . (20)

We observe then that equation (17) can be written as

〈K |χ|I 〉 = 〈K |v |I 〉+
1
2

∑
C

〈K |v |C 〉〈C |t|I 〉

by mapping the two index pairs kl → K , ij → I , cd → C . The sum
looks now like a matrix-matrix multiplication. This is useful
because there are packages like BLAS (Basic Linear Algebra
Subprograms) which have extremely fast implementations of
matrix-matrix multiplication.



Testing brute force against block structures for MBPT(2)

Figure: MBPT2 contribution to the correlation for pure neutron matter
with N = 14 neutrons and periodic boundary conditions. Up to
approximately 1600 single-particle states have been included in the sums
over intermediate states.



Convergence properties for pure neutron matter I
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Figure: Energy per particle of pure neutron matter computed in the CCD
approximation with the Minnesota potential for different numbers of
particles with Nmax = 20.



Convergence properties for pure neutron matter II
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Figure: Energy per particle of pure neutron matter computed in the CCD
approximation with the Minnesota potential for different model space
sizes with A = 114.



Comparing CCD with Monte Carlo
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Figure: CCD, Reference energy and Diffusion Monte Carlo results for
pure neutron matter with 66 neutrons and Nmax = 36.
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