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Introduction
Coester and Kummel first developed the ideas that led to coupled-cluster theory
in the late 1950s. The basic idea is that the correlated wave function of a many-
body system | Ψ〉 can be formulated as an exponential of correlation operators
T acting on a reference state | Φ〉

| Ψ〉 = exp
(
−T̂
)
| Φ〉 .

We will discuss how to define the operators later in this work. This simple ansatz
carries enormous power. It leads to a non-perturbative many-body theory that
includes summation of ladder diagrams , ring diagrams, and an infinite-order
generalization of many-body perturbation theory.

Introduction
Developments and applications of coupled-cluster theory took different routes
in chemistry and nuclear physics. In quantum chemistry, coupled-cluster devel-
opments and applications have proven to be extremely useful, see for example
the review by Barrett and Musial as well as the recent textbook by Shavitt
and Barrett. Many previous applications to nuclear physics struggled with the
repulsive character of the nuclear forces and limited basis sets used in the compu-
tations. Most of these problems have been overcome during the last decade and
coupled-cluster theory is one of the computational methods of preference for do-
ing nuclear physics, with applications ranging from light nuclei to medium-heavy
nuclei, see for example the recent review by Hagen, Papenbrock, Hjorth-Jensen
and Dean.
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A non-practical way of solving the eigenvalue problem
Before we proceed with the derivation of the Coupled cluster equations, let us
repeat some of the arguments we presented during our FCI lectures. In our FCI
discussions, we rewrote the solution of the Schroedinger equation as a set of
coupled equationsin the unknown coefficients C. Let us repeat some of these
arguments. To obtain the eigenstates and eigenvalues in terms of non-linear
equations is not a very practical approach. However, it serves the scope of
linking FCI theory with approximative solutions to the many-body problem like
Coupled cluster (CC) theory

A non-practical way of solving the eigenvalue problem
If we assume that we have a two-body operator at most, the Slater-Condon rule
gives then an equation for the correlation energy in terms of Cai and Cabij only.
We get then

〈Φ0|Ĥ − E|Φ0〉+
∑
ai

〈Φ0|Ĥ − E|Φai 〉Cai +
∑
abij

〈Φ0|Ĥ − E|Φabij 〉Cabij = 0,

or
E − E0 = ∆E =

∑
ai

〈Φ0|Ĥ|Φai 〉Cai +
∑
abij

〈Φ0|Ĥ|Φabij 〉Cabij ,

where the energy E0 is the reference energy and ∆E defines the so-called
correlation energy. The single-particle basis functions could be the results of a
Hartree-Fock calculation or just the eigenstates of the non-interacting part of
the Hamiltonian.

A non-practical way of solving the eigenvalue problem
In our notes on Hartree-Fock calculations, we have already computed the matrix
〈Φ0|Ĥ|Φa

i 〉 and 〈Φ0|Ĥ|Φab
ij 〉. If we are using a Hartree-Fock basis, then the

matrix elements 〈Φ0|Ĥ|Φai 〉 = 0 and we are left with a correlation energy given
by

E − E0 = ∆EHF =
∑
abij

〈Φ0|Ĥ|Φabij 〉Cabij .

A non-practical way of solving the eigenvalue problem
Inserting the various matrix elements we can rewrite the previous equation as

∆E =
∑
ai

〈i|f̂ |a〉Cai +
∑
abij

〈ij|v̂|ab〉Cabij .

This equation determines the correlation energy but not the coefficients C. We
need more equations. Our next step is to set up

〈Φai |Ĥ−E|Φ0〉+
∑
bj

〈Φai |Ĥ−E|Φbj〉Cbj+
∑
bcjk

〈Φai |Ĥ−E|Φbcjk〉Cbcjk+
∑
bcdjkl

〈Φai |Ĥ−E|Φbcdjkl〉Cbcdjkl = 0,
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as this equation will allow us to find an expression for the coefficents Cai since
we can rewrite this equation as

〈i|f̂ |a〉+〈Φai |Ĥ|Φai 〉Cai +
∑
bj 6=ai

〈Φai |Ĥ|Φbj〉Cbj+
∑
bcjk

〈Φai |Ĥ|Φbcjk〉Cbcjk+
∑
bcdjkl

〈Φai |Ĥ|Φbcdjkl〉Cbcdjkl = ECai .

A non-practical way of solving the eigenvalue problem
We see that on the right-hand side we have the energy E. This leads to a
non-linear equation in the unknown coefficients. These equations are normally
solved iteratively ( that is we can start with a guess for the coefficients Cai ). A
common choice is to use perturbation theory for the first guess, setting thereby

Cai = 〈i|f̂ |a〉
εi − εa

.

The observant reader will however see that we need an equation for Cbcjk and
Cbcdjkl as well. To find equations for these coefficients we need then to continue
our multiplications from the left with the various ΦPH terms.

A non-practical way of solving the eigenvalue problem
For Cbcjk we need then

〈Φabij |Ĥ − E|Φ0〉+
∑
kc

〈Φabij |Ĥ − E|Φck〉Cck+

∑
cdkl

〈Φabij |Ĥ−E|Φcdkl 〉Ccdkl+
∑

cdeklm

〈Φabij |Ĥ−E|Φcdeklm〉Ccdeklm+
∑

cdefklmn

〈Φabij |Ĥ−E|Φ
cdef
klmn〉C

cdef
klmn = 0,

and we can isolate the coefficients Ccdkl in a similar way as we did for the
coefficients Cai . A standard choice for the first iteration is to set

Cabij = 〈ij|v̂|ab〉
εi + εj − εa − εb

.

A non-practical way of solving the eigenvalue problem
At the end we can rewrite our solution of the Schroedinger equation in terms of
n coupled equations for the coefficients CPH . This is a very cumbersome way of
solving the equation. However, by using this iterative scheme we can illustrate
how we can compute the various terms in the wave operator or correlation
operator Ĉ. We will later identify the calculation of the various terms CPH
as parts of different many-body approximations to full CI. In particular, we
can relate this non-linear scheme with Coupled Cluster theory and many-body
perturbation theory.

3



Summarizing FCI and bringing in approximative methods
If we can diagonalize large matrices, FCI is the method of choice since:

• It gives all eigenvalues, ground state and excited states

• The eigenvectors are obtained directly from the coefficients CPH which
result from the diagonalization

• We can compute easily expectation values of other operators, as well as
transition probabilities

• Correlations are easy to understand in terms of contributions to a given
operator beyond the Hartree-Fock contribution. This is the standard
approach in many-body theory.

Summarizing FCI and bringing in approximative methods
The correlation energy is defined as, with a two-body Hamiltonian,

∆E =
∑
ai

〈i|f̂ |a〉Cai +
∑
abij

〈ij|v̂|ab〉Cabij .

The coefficients C result from the solution of the eigenvalue problem. The
energy of say the ground state is then

E = Eref + ∆E,

where the so-called reference energy is the energy we obtain from a Hartree-Fock
calculation, that is

Eref = 〈Φ0|Ĥ|Φ0〉.

Summarizing FCI and bringing in approximative methods
However, as we have seen, even for a small case like the four first major shells
and a nucleus like oxygen-16, the dimensionality becomes quickly intractable. If
we wish to include single-particle states that reflect weakly bound systems, we
need a much larger single-particle basis. We need thus approximative methods
that sum specific correlations to infinite order.

Popular methods are

• Many-body perturbation theory (in essence a Taylor expansion)

• Coupled cluster theory (coupled non-linear equations)

• Green’s function approaches (matrix inversion)

• Similarity group transformation methods (coupled ordinary differential
equations)

All these methods start normally with a Hartree-Fock basis as the calculational
basis.
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A quick tour of Coupled Cluster theory
The ansatz for the wavefunction (ground state) is given by

|Ψ〉 = |ΨCC〉 = eT̂ |Φ0〉 =
(

A∑
n=1

1
n! T̂

n

)
|Φ0〉,

where A represents the maximum number of particle-hole excitations and T̂ is
the cluster operator defined as

T̂ = T̂1 + T̂2 + . . .+ T̂A

T̂n =
(

1
n!

)2 ∑
i1,i2,...in
a1,a2,...an

ta1a2...an
i1i2...in

a†a1
a†a2

. . . a†an
ain . . . ai2ai1 .

A quick tour of Coupled Cluster theory
The energy is given by

ECC = 〈Φ0|H|Φ0〉,

where H is a similarity transformed Hamiltonian

H = e−T̂ ĤNe
T̂

ĤN = Ĥ − 〈Φ0|Ĥ|Φ0〉.

A quick tour of Coupled Cluster theory
The coupled cluster energy is a function of the unknown cluster amplitudes
ta1a2...an
i1i2...in

, given by the solutions to the amplitude equations

0 = 〈Φa1...an
i1...in

|H|Φ0〉.

The similarity transformed HamiltonianH is expanded using the Baker-Campbell-
Hausdorff expression,

H = ĤN +
[
ĤN , T̂

]
+ 1

2

[[
ĤN , T̂

]
, T̂
]

+ . . .

1
n!

[
. . .
[
ĤN , T̂

]
, . . . T̂

]
+ . . .

and simplified using the connected cluster theorem

H = ĤN +
(
ĤN T̂

)
c

+ 1
2

(
ĤN T̂

2
)
c

+ · · ·+ 1
n!

(
ĤN T̂

n
)
c

+ . . .
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A quick tour of Coupled Cluster theory
A much used approximation is to truncate the cluster operator T̂ at the n = 2
level. This defines the so-called singes and doubles approximation to the Coupled
Cluster wavefunction, normally shortened to CCSD..

The coupled cluster wavefunction is now given by

|ΨCC〉 = eT̂1+T̂2 |Φ0〉

where

T̂1 =
∑
ia

tai a
†
aai

T̂2 = 1
4
∑
ijab

tabij a
†
aa
†
bajai.

A quick tour of Coupled Cluster theory
The amplutudes t play a role similar to the coefficients C in the shell-model
calculations. They are obtained by solving a set of non-linear equations similar
to those discussed above in connection withe FCI discussion.

If we truncate our equations at the CCSD level, it corresponds to performing
a transformation of the Hamiltonian matrix of the following type for a six particle
problem (with a two-body Hamiltonian):

0p− 0h 1p− 1h 2p− 2h 3p− 3h 4p− 4h 5p− 5h 6p− 6h
0p− 0h x̃ x̃ x̃ 0 0 0 0
1p− 1h 0 x̃ x̃ x̃ 0 0 0
2p− 2h 0 x̃ x̃ x̃ x̃ 0 0
3p− 3h 0 x̃ x̃ x̃ x̃ x̃ 0
4p− 4h 0 0 x̃ x̃ x̃ x̃ x̃
5p− 5h 0 0 0 x̃ x̃ x̃ x̃
6p− 6h 0 0 0 0 x̃ x̃ x̃

A quick tour of Coupled Cluster theory
In our FCI discussion the correlation energy is defined as, with a two-body
Hamiltonian,

∆E =
∑
ai

〈i|f̂ |a〉Cai +
∑
abij

〈ij|v̂|ab〉Cabij .

In Coupled cluster theory it becomes (irrespective of level of truncation of T )

∆E =
∑
ai

〈i|f̂ |a〉tai +
∑
abij

〈ij|v̂|ab〉tabij .
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A quick tour of Coupled Cluster theory
Coupled cluster theory has several interesting computational features and is the
method of choice in quantum chemistry. The method was originally proposed by
Coester and Kummel, two nuclear physicists (way back in the fifties). It came
back in full strength in nuclear physics during the last decade.

There are several interesting features:

• With a truncation like CCSD or CCSDT, we can include to infinite order
correlations like 2p− 2h.

• We can include a large basis of single-particle states, not possible in
standard FCI calculations

However, Coupled Cluster theory is

• non-variational

• if we want to find properties of excited states, additional calculations via
for example equation of motion methods are needed

• if correlations are strong, a single-reference ansatz may not be the best
starting point

• we cannot quantify properly the error we make when truncations are made
in the cluster operator

The CCD approximation
We will now approximate the cluster operator T̂ to include only 2p− 2h correla-
tions. This leads to the so-called CCD approximation, that is

T̂ ≈ T̂2 = 1
4
∑
abij

tabij a
†
aa
†
bajai,

meaning that we have

|Ψ0〉 ≈ |ΨCCD〉 = exp
(
T̂2

)
|Φ0〉.

The CCD approximation
Inserting these equations in the expression for the computation of the energy
we have, with a Hamiltonian defined with respect to a general vacuum (see the
exercises in the second quantization part)

Ĥ = ĤN + Eref ,

with
ĤN =

∑
pq

〈p|f̂ |q〉a†paq + 1
4
∑
pqrs

〈pq|v̂|rs〉a†pa†qasar,
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we obtain that the energy can be written as

〈Φ0| exp−
(
T̂2

)
ĤN exp

(
T̂2

)
|Φ0〉 = 〈Φ0|ĤN (1 + T̂2)|Φ0〉 = ECCD.

The CCD approximation
This quantity becomes

ECCD = Eref + 1
4
∑
abij

〈ij|v̂|ab〉tabij ,

where the latter is the correlation energy from this level of approximation of CC
theory. Similarly, the expression for the amplitudes reads

〈Φabij | exp−
(
T̂2

)
ĤN exp

(
T̂2

)
|Φ0〉 = 0.

The CCD approximation
These equations can be reduced to (after several applications of Wick’s theorem)
to, for all i > j and all a > b,

0 = 〈ab|v̂|ij〉+ (εa + εb − εi − εj) tabij

+1
2
∑
cd

〈ab|v̂|cd〉tcdij + 1
2
∑
kl

〈kl|v̂|ij〉tabkl + P̂ (ij|ab)
∑
kc

〈kb|v̂|cj〉tacik

+1
4
∑
klcd

〈kl|v̂|cd〉tcdij tabkl + P̂ (ij)
∑
klcd

〈kl|v̂|cd〉tacik tbdjl

−1
2 P̂ (ij)

∑
klcd

〈kl|v̂|cd〉tdcik tablj −
1
2 P̂ (ab)

∑
klcd

〈kl|v̂|cd〉taclk tdbij , (1)

where we have defined
P̂ (ab) = 1− P̂ab,

where P̂ab interchanges two particles occupying the quantum numbers a and b.

The CCD approximation
The operator P̂ (ij|ab) is defined as

P̂ (ij|ab) = (1− P̂ij)(1− P̂ab).

Recall also that the unknown amplitudes tabij represent anti-symmetrized matrix
elements, meaning that they obey the same symmetry relations as the two-body
interaction, that is

tabij = −tabji = −tbaij = tbaji .

The two-body matrix elements are also anti-symmetrized, meaning that

〈ab|v̂|ij〉 = −〈ab|v̂|ji〉 = −〈ba|v̂|ij〉 = 〈ba|v̂|ji〉.

The non-linear equations for the unknown amplitudes tabij are solved iteratively.
We discuss the implementation of these equations below.
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Approximations to the full CCD equations
It is useful to make approximations to the equations for the amplitudes. The
standard method for solving these equations is to set up an iterative scheme
where method’s like Newton’s method or similar root searching methods are
used to find the amplitudes. Itreative solvers need a guess for the amplitudes.
A good starting point is to use the correlated wave operator from perturbation
theory to first order in the interaction. This means that we define the zeroth
approximation to the amplitudes as

t(0) = 〈ab|v̂|ij〉
(εi + εj − εa − εb)

,

leading to our first approximation for the correlation energy at the CCD level
to be equal to second-order perturbation theory without 1p − 1h excitations,
namely

∆E(0)
CCD = 1

4
∑
abij

〈ij|v̂|ab〉〈ab|v̂|ij〉
(εi + εj − εa − εb)

.

Approximations to the full CCD equations
With this starting point, we are now ready to solve Eq. (1) iteratively. Before we
attack the full equations, it is however instructive to study a truncated version
of the equations. We will first study the following approximation where we take
away all terms except the linear terms that involve the single-particle energies
and the the two-particle intermediate excitations, that is

0 = 〈ab|v̂|ij〉+ (εa + εb − εi − εj) tabij + 1
2
∑
cd

〈ab|v̂|cd〉tcdij . (2)

Approximations to the full CCD equations
Setting the single-particle energies for the hole states equal to an energy variable
ω = εi + εj , Eq. (2) reduces to the well-known equations for the so-called
G-matrix, widely used in infinite matter and finite nuclei studies. The equation
can then be reordered and solved by matrix inversion. To see this let us define
the following quantity

τabij = (ω − εa − εb) tabij ,

and inserting
1 = (ω − εc − εd)

(ω − εc − εd)
,

in the intermediate sums over cd in Eq. (2), we can rewrite the latter equation
as

τabij (ω) = 〈ab|v̂|ij〉+ 1
2
∑
cd

〈ab|v̂|cd〉 1
ω − εc − εd

τ cdij (ω),

9

http://www.sciencedirect.com/science/journal/03701573/261/3-4


where we have indicated an explicit energy dependence. This equation, trans-
forming a two-particle configuration into a single index, can be transformed into
a matrix inversion problem. Solving the equations for a fixed energy ω allows
us to compare directly with results from Green’s function theory when only
two-particle intermediate states are included.

Approximations to the full CCD equations
To solve Eq. (2), we would thus start with a guess for the unknown amplitudes,
typically using the wave operator defined by first order in perturbation theory,
leading to a zeroth approximation to the energy given by second-order perturba-
tion theory for the correlation energy. A simple approach to the solution of Eq.
(2), is to thus to

1. Start with a guess for the amplitudes and compute the zeroth approximation
to the correlation energy

2. Use the ansatz for the amplitudes to solve Eq. (2) via for example your
root-finding method of choice (Newton’s method or modifications thereof
can be used) and continue these iterations till the correlation energy does
not change more than a prefixed quantity λ; ∆E(i)

CCD −∆E(i−1)
CCD ≤ λ.

3. It is common during the iterations to scale the amplitudes with a parameter
α, with α ∈ (0, 1] as t(i) = αt(i) + (1− α)t(i−1).

Approximations to the full CCD equations
The next approximation is to include the two-hole term in Eq. (1), a term
which allow us to make a link with Green’s function theory with two-particle
and two-hole correlations. This means that we solve

0 = 〈ab|v̂|ij〉+(εa + εb − εi − εj) tabij + 1
2
∑
cd

〈ab|v̂|cd〉tcdij + 1
2
∑
kl

〈kl|v̂|ij〉tabkl . (3)

This equation is solved the same way as we would do for Eq. (2). The final step
is then to include all terms in Eq. (1).

Introduction to studies of infinite matter
Studies of infinite nuclear matter play an important role in nuclear physics.
The aim of this part of the lectures is to provide the necessary ingredients
for perfoming studies of neutron star matter (or matter in β-equilibrium) and
symmetric nuclear matter.

Here we will study infinite neutron matter
• at the Hartree-Fock with realistic nuclear forces and

• using many-body methods like coupled-cluster theory or many-body per-
turbation theory
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Infinite nuclear matter and neutron star matter
Studies of dense baryonic matter are of central importance to our basic un-
derstanding of the stability of nuclear matter, spanning from matter at high
densities and temperatures to matter as found within dense astronomical objects
like neutron stars.

Neutron star matter at densities of 0.1 fm−3 and greater, is often assumed to
be made of mainly neutrons, protons, electrons and muons in beta equilibrium.
However, other baryons like various hyperons may exist, as well as possible
mesonic condensates and transitions to quark degrees of freedom at higher
densities. Here we focus on specific definitions of various phases and focus on
distinct phases of matter such as pure baryonic matter and/or quark matter. The
composition of matter is then determined by the requirements of chemical and
electrical equilibrium. Furthermore, we will also consider matter at temperatures
much lower than the typical Fermi energies.

Properties of infinite nuclear matter
The equilibrium conditions are governed by the weak processes (normally referred
to as the processes for β-equilibrium)

b1 → b2 + l + ν̄l b2 + l→ b1 + νl, (4)

where b1 and b2 refer to for example the baryons being a neutron and a proton,
respectively, l is either an electron or a muon and ν̄l and νl their respective
anti-neutrinos and neutrinos. Muons typically appear at a density close to
nuclear matter saturation density, the latter being

n0 ≈ 0.16± 0.02 fm−3,

with a corresponding binding energy E0 for symmetric nuclear matter (SNM) at
saturation density of

E0 = B/A = −15.6± 0.2 MeV.

The infinite neutron gas as a homogenous system
This is a homogeneous system and the one-particle wave functions are given by
plane wave functions normalized to a volume Ω for a box with length L (the
limit L→∞ is to be taken after we have computed various expectation values)

ψkσ(r) = 1√
Ω

exp (ikr)ξσ

where k is the wave number and ξσ is a spin function for either spin up or down

ξσ=+1/2 =
(

1
0

)
ξσ=−1/2 =

(
0
1

)
.
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Periodic boundary conditions and single-particle states
When using periodic boundary conditions, the discrete-momentum single-particle
basis functions

φk(r) = eik·r/Ld/2

are associated with the single-particle energy

εnx,ny
= ~2

2m

(
2π
L

)2 (
n2
x + n2

y

)
(5)

for two-dimensional sytems and

εnx,ny,nz
= ~2

2m

(
2π
L

)2 (
n2
x + n2

y + n2
z

)
(6)

for three-dimensional systems.

More on periodic boundary conditions and single-particle
states
The table on the next slide illustrates how single-particle energies fill energy shells
in a two-dimensional neutron box. Here nx and ny are the momentum quantum
numbers, n2

x + n2
y determines the single-particle energy level, N↑↓ represents the

cumulated number of spin-orbitals in an unpolarized spin phase, and N↑↑ stands
for the cumulated number of spin-orbitals in a spin-polarized system.
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Magic numbers for the two-dimensional neutron (or elec-
tron) gas

n2
x + n2

y nx ny N↑↓ N↑↑
0 0 0 2 1
1 -1 0

1 0
0 -1
0 1 10 5

2 -1 -1
-1 1
1 -1
1 1 18 9

4 -2 0
2 0
0 -2
0 2 26 13

5 -2 -1
2 -1
-2 1
2 1
-1 -2
-1 2
1 -2
1 2 42 21

Three-dimensional neutron gas
Using the same approach as made with the two-dimensional electron gas with
the single-particle kinetic energy defined as

~2

2m

(
k2
nx

+ k2
ny
k2
nz

)
,

and
kni = 2πni

L
ni = 0,±1,±2, . . . ,

we can set up a similar table and obtain (assuming identical particles one and
including spin up and spin down solutions) for energies less than or equal to
n2
x + n2

y + n2
z ≤ 3
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Single-particle states for the three-dimensional neutron gas
n2
x + n2

y + n2
z nx ny nz N↑↓

0 0 0 0 2
1 -1 0 0
1 1 0 0
1 0 -1 0
1 0 1 0
1 0 0 -1
1 0 0 1 14
2 -1 -1 0
2 -1 1 0
2 1 -1 0
2 1 1 0
2 -1 0 -1
2 -1 0 1
2 1 0 -1
2 1 0 1
2 0 -1 -1
2 0 -1 1
2 0 1 -1
2 0 1 1 38
3 -1 -1 -1
3 -1 -1 1
3 -1 1 -1
3 -1 1 1
3 1 -1 -1
3 1 -1 1
3 1 1 -1
3 1 1 1 54

Continuing in this way we get for n2
x+n2

y +n2
z = 4 a total of 12 additional states,

resulting in ? as a new magic number. We can continue like this by adding more
shells.

When performing calculations based on many-body perturbation theory,
Coupled cluster theory or other many-body methods, we need then to add states
above the Fermi level in order to sum over single-particle states which are not
occupied.

Input parameters
Every number of particles for filled shells defines also the number of particles
to be used in a given calculation. We use the number of particles to define the
density of the system

ρ = g
k3
F

6π2 ,
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where you need to define kF and the degeneracy g, which is two for one type of
spin-1/2 particles and four for symmetric nuclear matter.

With the density we can define the length L of the box used with periodic
boundary contributions, that is use the relation

V = L3 = A

ρ
.

Finally we can use L to define the spacing to set up the spacing between varipus
k-values, that is

∆k = 2π
L
.

Here, A can be the number of nucleons.

Potential model employed in code development
The interaction we will use for these calculations is a semirealistic nucleon-nucleon
potential known as the Minnesota potential

Vα (r) = Vα exp (−αr2).

The spin and isospin dependence of the Minnesota potential is given by

V (r) = 1
2

(
VR + 1

2 (1 + Pσ12)VT + 1
2 (1− Pσ12)VS

)
(1− Pσ12P

τ
12) , (7)

where
Pσ12 = 1

2 (1 + σ1 · σ2) ,

and
P τ12 = 1

2 (1 + τ1 · τ2)

are the spin and isospin exchange operators, respectively.

Fourier transform
A Fourier transform to momentum space of the radial part

Vα (r)

is rather simple since the radial depends only on the magnitude of the relative
distance and thereby the relative momentum

q = 1
2 (kp − kq − kr + ks)

Omitting spin and isospin dependencies, the momentum space version of the
interaction reads

〈kpkq|Vα|krks〉 = Vα
L3

(π
α

)3/2
exp (−q

2

4α )δkp+kq,kr+ks (8)
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Developing a program for infinite matter
• Structure a code in terms of functions.

• Modularize your codes.

• Be able to read input data flexibly.

• Write unit tests (test functions) and let your code undergo heavy testing.

• Refactor code in terms of classes (instead of functions only).

• Conduct and automate large-scale numerical experiments.

• New code is added in a modular fashion to a library (modules).

• Programs are run through convenient user interfaces.

• Use scripts in order to automatize tedious manual work.

• Make sure your scientific investigations are reproducible and document
properly your results.

• Use version control software like for example git

Codes and reading material
• The codes are all available from the coming Lectures Notes in Physics
volume An advanced course in computational nuclear physics: Bridging the
scales from quarks to neutron stars, M. Hjorth-Jensen, M. P. Lombardo,
U. van Kolck, Editors

• For more reading on CCD see chapter 8 of the coming Lectures Notes
in Physics volume An advanced course in computational nuclear physics:
Bridging the scales from quarks to neutron stars, M. Hjorth-Jensen, M. P.
Lombardo, U. van Kolck, Editors

The CCD equation
The CCD equations can be written as

(εi + εj − εa − εb) tabij = 〈ab|v̂|ij〉

+1
2
∑
cd

〈ab|v̂|cd〉tcdij + 1
2
∑
kl

〈kl|v̂|ij〉tabkl + P̂ (ij|ab)
∑
kc

〈kb|v̂|cj〉tacik

+1
4
∑
klcd

〈kl|v̂|cd〉tcdij tabkl + P̂ (ij)
∑
klcd

〈kl|v̂|cd〉tacik tbdjl

−1
2 P̂ (ij)

∑
klcd

〈kl|v̂|cd〉tdcik tablj −
1
2 P̂ (ab)

∑
klcd

〈kl|v̂|cd〉taclk tdbij , (9)
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for all i < j and all a < b, using the standard notation that a, b, ... are particle
states and i, j, ... are hole states. With the CCD correlation energy given by

∆ECCD = 1
4
∑
ijab

〈ij|v̂|ab〉tabij . (10)

Solving the CCD equations
One way to solve these equations, is to write equation (3) as a series of iterative
nonlinear algebraic equations

tabij
(n+1) = 1

εabij

(
〈ab|v̂|ij〉

+1
2
∑
cd

〈ab|v̂|cd〉tcdij (n) + 1
2
∑
kl

〈kl|v̂|ij〉tabkl (n) + P̂ (ij|ab)
∑
kc

〈kb|v̂|cj〉tacik (n)

+1
4
∑
klcd

〈kl|v̂|cd〉tcdij (n)tabkl
(n) + P̂ (ij)

∑
klcd

〈kl|v̂|cd〉tacik (n)tbdjl
(n)

−1
2 P̂ (ij)

∑
klcd

〈kl|v̂|cd〉tdcik (n)tablj
(n) − 1

2 P̂ (ab)
∑
klcd

〈kl|v̂|cd〉taclk (n)tdbij
(n)
)
, (11)

for all i < j and all a < b, where εabij = (εi + εj − εa − εb), and tabij
(n) is the t

amplitude for the nth iteration of the series. This way, given some starting guess
tabij

(0), we can generate subsequent t amplitudes that converges to some value.

Memory considerations
Care should thus be placed into how we store these objects. These are objects
with four indices and a sensible first implementation of the CCD equations would
be to create two four-dimensional arrays to store the objects. However, it is
often more convenient to work with simple one-dimensional arrays instead.

The goal of our code is to calculate the correlation energy, ∆ECCD, meaning
that after each iteration of our equations, we use our newest t amplitudes to
update the correlation energy

∆E(n)
CCD = 1

4
∑
ijab

〈ij|v̂|ab〉tabij (n). (12)

We check that our result is converged by testing whether the most recent iteration
has changed the correlation energy by less than some tolerance threshold η,

η > |∆E(n+1)
CCD −∆E(n)

CCD|. (13)

More on memory
One limitation that will be ran into while trying to do realistic CCD calculations
is that of memory. The four-indexed two-body matrix elements (TBMEs) and
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t-amplitudes have to store a lot of elements, and the size of these arrays can
quickly exceed the available memory on a machine. If a calculation wants to use
500 single-particle basis states, then a structure like 〈pq|v|rs〉 will need a length
of 500 for each of its four indices, which means it will have 5004 = 625 × 108

elements. To get a handle on how much memory is used, consider the elements
as double-precision floating point type. One double takes up 8 bytes of memory.
This specific array would take up 8× 625× 108 bytes = 5000× 108 bytes = 500
Gbytes of memory.

Using symmetries
Most personal computers in 2016 have 4-8 Gbytes of RAM, meaning that this
calculation would be way out of reach. There are supercomputers that can
handle applications using 500 Gbytes of memory, but we can quickly reduce the
total memory required by applying some physical arguments. In addition to
vanishing elements with repeated indices, mentioned above, elements that do
not obey certain symmetries are also zero. Almost all realistic two-body forces
preserve some quantities due to symmetries in the interaction. For example, an
interaction with rotational symmetry will conserve angular momentum. This
means that a two-body ket state |rs〉, which has some set of quantum numbers,
will retain quantum numbers corresponding to the interaction symmetries after
being acted on by v̂. This state is then projected onto |pq〉 with its own set of
quantum numbers. Thus 〈pq|v|rs〉 is only non-zero if |pq〉 and |rs〉 share the
same quantum numbers that are preserved by v̂. In addition, because the cluster
operators represent excitations due to the interaction, tabij is only non-zero if |ij〉
has the same relevant quantum numbers as |ab〉.

Using symmetries II
To take advantage of this, these two-body ket states can be organized into
“channels” of shared quantum numbers. In the case of the pairing model, the
interaction preserves the total spin projection of a two-body state, Sz = sz1 +sz2.
The single particle states can have spin of +1/2 or -1/2, so there can be three
two-body channels with Sz = −1, 0,+1. These channels can then be indexed
with a unique label in a similar way to the single particle index scheme. In
more complicated systems, there will be many more channels involving multiple
symmetries, so it is useful to create a data structure that stores the relevant
two-body quantum numbers to keep track of the labeling scheme.

Using symmetries III
It is more efficient to use two-dimensional array data structures, where the first
index refers to the channel number and the second refers to the element within
that channel. So to access matrix elements or t amplitudes, you can loop over
the channels first, then the indices within that channel. To get an idea of the
savings using this block diagonal structure, let’s look at a case with a plane wave
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basis, with three momentum and one spin quantum numbers, with an interaction
that conserves linear momentum in all three dimensions, as well as the total
spin projection. Using 502 basis states, the TBME’s require about 0.23 Gb of
memory in block diagonal form, which is an enormous saving from the 500 Gb
mentioned earlier in the naïve storage scheme.

Using intermediates
Since the calculation of all zeros can now be avoided, improvements in speed
and memory will now follow. To get a handle on how these CCD calculations
are implemented we need only to look at the most expensive sum in equation
(3). This corresponds to the sum over klcd. Since this sum is repeated for all
i < j and a < b, it means that these equations will scale as O(n4

pn
4
h). However,

they can be rewritten using intermediates as

0 = 〈ab|v̂|ij〉+ P̂ (ab)
∑
c

〈b|χ|c〉〈ac|t|ij〉 − P̂ (ij)
∑
k

〈k|χ|j〉〈ab|t|ik〉

+1
2
∑
cd

〈ab|χ|cd〉〈cd|t|ij〉+ 1
2
∑
kl

〈ab|t|kl〉〈kl|χ|ij〉 (14)

+P̂ (ij)P̂ (ab)
∑
kc

〈ac|t|ik〉〈kb|χ|cj〉

for all i, j, a, b.

Defining intermediates
The intermediates χ are defined as

〈b|χ|c〉 = 〈b|f |c〉 − 1
2
∑
kld

〈bd|t|kl〉〈kl|v|cd〉 (15)

〈k|χ|j〉 = 〈k|f |j〉+ 1
2
∑
cdl

〈kl|v|cd〉〈cd|t|jl〉 (16)

〈kl|χ|ij〉 = 〈kl|v|ij〉+ 1
2
∑
cd

〈kl|v|cd〉〈cd|t|ij〉 (17)

〈kb|χ|cj〉 = 〈kb|v|cj〉+ 1
2
∑
dl

〈kl|v|cd〉〈db|t|lj〉 (18)

〈ab|χ|cd〉 = 〈ab|v|cd〉 (19)

With the introduction of the above intermediates, the CCD equations scale
now as O(n2

hn
4
p).
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Speed up
To further speed up these computations, we see that these sums can be written
in terms of matrix-matrix multiplications. It is not obvious how to write all of
these sums in such a way, but it is useful to first recall that the expression for
the multiplication of two matrices Ĉ = Â× B̂ can be written as

Cij =
∑
k

Aik ×Bkj . (20)

We observe then that equation (17) can be written as

〈K|χ|I〉 = 〈K|v|I〉+ 1
2
∑
C

〈K|v|C〉〈C|t|I〉

by mapping the two index pairs kl → K, ij → I, cd → C. The sum looks now
like a matrix-matrix multiplication. This is useful because there are packages
like BLAS (Basic Linear Algebra Subprograms) which have extremely fast
implementations of matrix-matrix multiplication.

Testing brute force against block structures for MBPT(2)

Figure 1: MBPT2 contribution to the correlation for pure neutron matter with
N = 14 neutrons and periodic boundary conditions. Up to approximately 1600
single-particle states have been included in the sums over intermediate states.

Convergence properties for pure neutron matter I
Convergence properties for pure neutron matter II
Comparing CCD with Monte Carlo
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Figure 2: Energy per particle of pure neutron matter computed in the CCD
approximation with the Minnesota potential for different numbers of particles
with Nmax = 20.
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Figure 3: Energy per particle of pure neutron matter computed in the CCD
approximation with the Minnesota potential for different model space sizes with
A = 114.
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Figure 4: CCD, Reference energy and Diffusion Monte Carlo results for pure
neutron matter with 66 neutrons and Nmax = 36.
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