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Slater determinants as basis states, short reminder

The simplest possible choice for many-body wavefunctions are
product wavefunctions. That is

Ψ(x1, x2, x3, . . . , xA) ≈ φ1(x1)φ2(x2)φ3(x3) . . .

because we are really only good at thinking about one particle at a
time. Such product wavefunctions, without correlations, are easy to
work with; for example, if the single-particle states φi (x) are
orthonormal, then the product wavefunctions are easy to
orthonormalize.
Similarly, computing matrix elements of operators are relatively
easy, because the integrals factorize.
The price we pay is the lack of correlations, which we must build up
by using many, many product wavefunctions. (Thus we have a
trade-off: compact representation of correlations but difficult
integrals versus easy integrals but many states required.)

Slater determinants as basis states, repetition

Because we have fermions, we are required to have antisymmetric
wavefunctions, e.g.

Ψ(x1, x2, x3, . . . , xA) = −Ψ(x2, x1, x3, . . . , xA)

etc. This is accomplished formally by using the determinantal
formalism

Ψ(x1, x2, . . . , xA) =
1√
A!

det

∣∣∣∣∣∣∣∣∣

φ1(x1) φ1(x2) . . . φ1(xA)
φ2(x1) φ2(x2) . . . φ2(xA)

...
φA(x1) φA(x2) . . . φA(xA)

∣∣∣∣∣∣∣∣∣

Product wavefunction + antisymmetry = Slater determinant.

Slater determinants as basis states

Ψ(x1, x2, . . . , xA) =
1√
N!

det

∣∣∣∣∣∣∣∣∣

φ1(x1) φ1(x2) . . . φ1(xA)
φ2(x1) φ2(x2) . . . φ2(xA)

...
φA(x1) φA(x2) . . . φA(xA)

∣∣∣∣∣∣∣∣∣

Properties of the determinant (interchange of any two rows or any
two columns yields a change in sign; thus no two rows and no two
columns can be the same) lead to the Pauli principle:

No two particles can be at the same place (two columns the
same); and
No two particles can be in the same state (two rows the same).

Slater determinants as basis states

As a practical matter, however, Slater determinants beyond N = 4
quickly become unwieldy. Thus we turn to the occupation
representation or second quantization to simplify calculations.
The occupation representation, using fermion creation and
annihilation operators, is compact and efficient. It is also abstract
and, at first encounter, not easy to internalize. It is inspired by
other operator formalism, such as the ladder operators for the
harmonic oscillator or for angular momentum, but unlike those
cases, the operators do not have coordinate space
representations.
Instead, one can think of fermion creation/annihilation operators as
a game of symbols that compactly reproduces what one would do,
albeit clumsily, with full coordinate-space Slater determinants.

Quick repetition of the occupation representation

We start with a set of orthonormal single-particle states {φi (x)}.
(Note: this requirement, and others, can be relaxed, but leads to a
more involved formalism.) Any orthonormal set will do.
To each single-particle state φi (x) we associate a creation operator
â†i and an annihilation operator âi .
When acting on the vacuum state |0〉, the creation operator â†i
causes a particle to occupy the single-particle state φi (x):

φi (x)→ â†i |0〉



Quick repetition of the occupation representation

But with multiple creation operators we can occupy multiple states:

φi (x)φj(x
′)φk(x ′′)→ â†i â

†
j â
†
k |0〉.

Now we impose antisymmetry, by having the fermion operators
satisfy anticommutation relations:

â†i â
†
j + â†j â

†
i = [â†i , â

†
j ]+ = {â†i , â

†
j } = 0

so that
â†i â
†
j = −â†j â

†
i

Quick repetition of the occupation representation

Because of this property, automatically â†i â
†
i = 0, enforcing the

Pauli exclusion principle. Thus when writing a Slater determinant
using creation operators,

â†i â
†
j â
†
k . . . |0〉

each index i , j , k , . . . must be unique.

Full Configuration Interaction Theory

We have defined the ansatz for the ground state as

|Φ0〉 =


∏

i≤F
â†i


 |0〉,

where the index i defines different single-particle states up to the
Fermi level. We have assumed that we have N fermions. A given
one-particle-one-hole (1p1h) state can be written as

|Φa
i 〉 = â†aâi |Φ0〉,

while a 2p2h state can be written as

|Φab
ij 〉 = â†aâ

†
bâj âi |Φ0〉,

and a general NpNh state as

|Φabc...
ijk... 〉 = â†aâ

†
bâ
†
c . . . âk âj âi |Φ0〉.

Full Configuration Interaction Theory
We can then expand our exact state function for the ground state
as

|Ψ0〉 = C0|Φ0〉+
∑

ai

C a
i |Φa

i 〉+
∑

abij

C ab
ij |Φab

ij 〉+ · · · = (C0 + Ĉ )|Φ0〉,

where we have introduced the so-called correlation operator

Ĉ =
∑

ai

C a
i â
†
aâi +

∑

abij

C ab
ij â†aâ

†
bâj âi + . . .

Since the normalization of Ψ0 is at our disposal and since C0 is by
hypothesis non-zero, we may arbitrarily set C0 = 1 with
corresponding proportional changes in all other coefficients. Using
this so-called intermediate normalization we have

〈Ψ0|Φ0〉 = 〈Φ0|Φ0〉 = 1,

resulting in
|Ψ0〉 = (1 + Ĉ )|Φ0〉.

Full Configuration Interaction Theory
We rewrite

|Ψ0〉 = C0|Φ0〉+
∑

ai

C a
i |Φa

i 〉+
∑

abij

C ab
ij |Φab

ij 〉+ . . . ,

in a more compact form as

|Ψ0〉 =
∑

PH

CP
H ΦP

H =

(∑

PH

CP
H ÂP

H

)
|Φ0〉,

where H stands for 0, 1, . . . , n hole states and P for 0, 1, . . . , n
particle states. Our requirement of unit normalization gives

〈Ψ0|Φ0〉 =
∑

PH

|CP
H |2 = 1,

and the energy can be written as

E = 〈Ψ0|Ĥ|Φ0〉 =
∑

PP′HH′
C ∗PH 〈ΦP

H |Ĥ|ΦP′
H′〉CP′

H′ .

Full Configuration Interaction Theory
Normally

E = 〈Ψ0|Ĥ|Φ0〉 =
∑

PP′HH′
C ∗PH 〈ΦP

H |Ĥ|ΦP′
H′〉CP′

H′ ,

is solved by diagonalization setting up the Hamiltonian matrix
defined by the basis of all possible Slater determinants. A
diagonalization is equivalent to finding the variational minimum of

〈Ψ0|Ĥ|Φ0〉 − λ〈Ψ0|Φ0〉,

where λ is a variational multiplier to be identified with the energy
of the system. The minimization process results in

δ
[
〈Ψ0|Ĥ|Φ0〉 − λ〈Ψ0|Φ0〉

]
=

∑

P′H′

{
δ[C ∗PH ]〈ΦP

H |Ĥ|ΦP′
H′〉CP′

H′ + C ∗PH 〈ΦP
H |Ĥ|ΦP′

H′〉δ[CP′
H′ ]− λ(δ[C ∗PH ]CP′

H′ + C ∗PH δ[CP′
H′ ]
}

= 0.

Since the coefficients δ[C ∗PH ] and δ[CP′
H′ ] are complex conjugates it

is necessary and sufficient to require the quantities that multiply
with δ[C ∗PH ] to vanish.



Full Configuration Interaction Theory

This leads to
∑

P′H′
〈ΦP

H |Ĥ|ΦP′
H′〉CP′

H′ − λCP
H = 0,

for all sets of P and H.
If we then multiply by the corresponding C ∗PH and sum over PH we
obtain

∑

PP′HH′
C ∗PH 〈ΦP

H |Ĥ|ΦP′
H′〉CP′

H′ − λ
∑

PH

|CP
H |2 = 0,

leading to the identification λ = E . This means that we have for all
PH sets ∑

P′H′
〈ΦP

H |Ĥ − E |ΦP′
H′〉 = 0. (1)

Full Configuration Interaction Theory

An alternative way to derive the last equation is to start from

(Ĥ − E )|Ψ0〉 = (Ĥ − E )
∑

P′H′
CP′
H′ |ΦP′

H′〉 = 0,

and if this equation is successively projected against all ΦP
H in the

expansion of Ψ, then the last equation on the previous slide results.
As stated previously, one solves this equation normally by
diagonalization. If we are able to solve this equation exactly (that is
numerically exactly) in a large Hilbert space (it will be truncated in
terms of the number of single-particle states included in the
definition of Slater determinants), it can then serve as a benchmark
for other many-body methods which approximate the correlation
operator Ĉ .

Example of a Hamiltonian matrix

Suppose, as an example, that we have six fermions below the Fermi
level. This means that we can make at most 6p − 6h excitations. If
we have an infinity of single particle states above the Fermi level,
we will obviously have an infinity of say 2p − 2h excitations. Each
such way to configure the particles is called a configuration. We
will always have to truncate in the basis of single-particle states.
This gives us a finite number of possible Slater determinants. Our
Hamiltonian matrix would then look like (where each block can
have a large dimensionalities):

0p − 0h 1p − 1h 2p − 2h 3p − 3h 4p − 4h 5p − 5h 6p − 6h
0p − 0h x x x 0 0 0 0
1p − 1h x x x x 0 0 0
2p − 2h x x x x x 0 0
3p − 3h 0 x x x x x 0
4p − 4h 0 0 x x x x x
5p − 5h 0 0 0 x x x x
6p − 6h 0 0 0 0 x x x

with a two-body force. Why are there non-zero blocks of elements?

Example of a Hamiltonian matrix with a Hartree-Fock basis

If we use a Hartree-Fock basis, this corresponds to a particular
unitary transformation where matrix elements of the type
〈0p − 0h|Ĥ|1p − 1h〉 = 〈Φ0|Ĥ|Φa

i 〉 = 0 and our Hamiltonian matrix
becomes

0p − 0h 1p − 1h 2p − 2h 3p − 3h 4p − 4h 5p − 5h 6p − 6h
0p − 0h x̃ 0 x̃ 0 0 0 0
1p − 1h 0 x̃ x̃ x̃ 0 0 0
2p − 2h x̃ x̃ x̃ x̃ x̃ 0 0
3p − 3h 0 x̃ x̃ x̃ x̃ x̃ 0
4p − 4h 0 0 x̃ x̃ x̃ x̃ x̃
5p − 5h 0 0 0 x̃ x̃ x̃ x̃
6p − 6h 0 0 0 0 x̃ x̃ x̃

Shell-model jargon
If we do not make any truncations in the possible sets of Slater
determinants (many-body states) we can make by distributing A
nucleons among n single-particle states, we call such a calculation
for Full configuration interaction theory
If we make truncations, we have different possibilities

The standard nuclear shell-model. Here we define an effective
Hilbert space with respect to a given core. The calculations
are normally then performed for all many-body states that can
be constructed from the effective Hilbert spaces. This
approach requires a properly defined effective Hamiltonian
We can truncate in the number of excitations. For example,
we can limit the possible Slater determinants to only 1p − 1h
and 2p − 2h excitations. This is called a configuration
interaction calculation at the level of singles and doubles
excitations, or just CISD.
We can limit the number of excitations in terms of the
excitation energies. If we do not define a core, this defines
normally what is called the no-core shell-model approach.

What happens if we have a three-body interaction and a
Hartree-Fock basis?

FCI and the exponential growth
Full configuration interaction theory calculations provide in
principle, if we can diagonalize numerically, all states of interest.
The dimensionality of the problem explodes however quickly.
The total number of Slater determinants which can be built with
say N neutrons distributed among n single particle states is

(
n
N

)
=

n!

(n − N)!N!
.

As an example, for a model space which comprises the first four
major harmonic oscillator shells only, that is the 0s, 0p, 1s0d and
1p0f shells we have 40 single particle states for neutrons and
protons. For the eight neutrons of oxygen-16 we would then have

(
40
8

)
=

40!

(32)!8!
∼ 8× 107,

possible Slater determinants. Multiplying this with the number of
proton Slater determinants we end up with approximately d ∼ 1015

possible Slater determinants and a Hamiltonian matrix of dimension
1015 × 1015, an intractable problem if we wish to diagonalize the
Hamiltonian matrix.



Exponential wall

This number can be reduced if we look at specific symmetries only.
However, the dimensionality explodes quickly!

For Hamiltonian matrices of dimensionalities which are smaller
than d ∼ 105, we would use so-called direct methods for
diagonalizing the Hamiltonian matrix
For larger dimensionalities iterative eigenvalue solvers like
Lanczos’ method are used. The most efficient codes at present
can handle matrices of d ∼ 1010.

A non-practical way of solving the eigenvalue problem
To see this, we look at the contributions arising from

〈ΦP
H | = 〈Φ0|

in Eq. (1), that is we multiply with 〈Φ0| from the left in

(Ĥ − E )
∑

P′H′
CP′
H′ |ΦP′

H′〉 = 0.

If we assume that we have a two-body operator at most, Slater’s
rule gives then an equation for the correlation energy in terms of
C a
i and C ab

ij only. We get then

〈Φ0|Ĥ−E |Φ0〉+
∑

ai

〈Φ0|Ĥ−E |Φa
i 〉C a

i +
∑

abij

〈Φ0|Ĥ−E |Φab
ij 〉C ab

ij = 0,

or

E − E0 = ∆E =
∑

ai

〈Φ0|Ĥ|Φa
i 〉C a

i +
∑

abij

〈Φ0|Ĥ|Φab
ij 〉C ab

ij ,

where the energy E0 is the reference energy and ∆E defines the
so-called correlation energy. The single-particle basis functions
could be the results of a Hartree-Fock calculation or just the
eigenstates of the non-interacting part of the Hamiltonian.A non-practical way of solving the eigenvalue problem

To see this, we look at the contributions arising from

〈ΦP
H | = 〈Φ0|

in Eq. (1), that is we multiply with 〈Φ0| from the left in

(Ĥ − E )
∑

P′H′
CP′
H′ |ΦP′

H′〉 = 0.

A non-practical way of solving the eigenvalue problem

If we assume that we have a two-body operator at most, Slater’s
rule gives then an equation for the correlation energy in terms of
C a
i and C ab

ij only. We get then

〈Φ0|Ĥ−E |Φ0〉+
∑

ai

〈Φ0|Ĥ−E |Φa
i 〉C a

i +
∑

abij

〈Φ0|Ĥ−E |Φab
ij 〉C ab

ij = 0,

or

E − E0 = ∆E =
∑

ai

〈Φ0|Ĥ|Φa
i 〉C a

i +
∑

abij

〈Φ0|Ĥ|Φab
ij 〉C ab

ij ,

where the energy E0 is the reference energy and ∆E defines the
so-called correlation energy. The single-particle basis functions
could be the results of a Hartree-Fock calculation or just the
eigenstates of the non-interacting part of the Hamiltonian.

Rewriting the FCI equation

In our notes on Hartree-Fock calculations, we have already
computed the matrix 〈Φ0|Ĥ|Φa

i 〉 and 〈Φ0|Ĥ|Φab
ij 〉. If we are using a

Hartree-Fock basis, then the matrix elements 〈Φ0|Ĥ|Φa
i 〉 = 0 and

we are left with a correlation energy given by

E − E0 = ∆EHF =
∑

abij

〈Φ0|Ĥ|Φab
ij 〉C ab

ij .

Rewriting the FCI equation

Inserting the various matrix elements we can rewrite the previous
equation as

∆E =
∑

ai

〈i |f̂ |a〉C a
i +

∑

abij

〈ij |v̂ |ab〉C ab
ij .

This equation determines the correlation energy but not the
coefficients C .



Rewriting the FCI equation, does not stop here

We need more equations. Our next step is to set up

〈Φa
i |Ĥ−E |Φ0〉+

∑

bj

〈Φa
i |Ĥ−E |Φb

j 〉Cb
j +
∑

bcjk

〈Φa
i |Ĥ−E |Φbc

jk 〉Cbc
jk +

∑

bcdjkl

〈Φa
i |Ĥ−E |Φbcd

jkl 〉Cbcd
jkl = 0,

as this equation will allow us to find an expression for the
coefficents C a

i since we can rewrite this equation as

〈i |f̂ |a〉+〈Φa
i |Ĥ|Φa

i 〉C a
i +
∑

bj 6=ai

〈Φa
i |Ĥ|Φb

j 〉Cb
j +
∑

bcjk

〈Φa
i |Ĥ|Φbc

jk 〉Cbc
jk +

∑

bcdjkl

〈Φa
i |Ĥ|Φbcd

jkl 〉Cbcd
jkl = EC a

i .

Rewriting the FCI equation, please stop here

We see that on the right-hand side we have the energy E . This
leads to a non-linear equation in the unknown coefficients. These
equations are normally solved iteratively ( that is we can start with
a guess for the coefficients C a

i ). A common choice is to use
perturbation theory for the first guess, setting thereby

C a
i =

〈i |f̂ |a〉
εi − εa

.

Rewriting the FCI equation, more to add

The observant reader will however see that we need an equation for
Cbc
jk and Cbcd

jkl as well. To find equations for these coefficients we
need then to continue our multiplications from the left with the
various ΦP

H terms.
For Cbc

jk we need then

〈Φab
ij |Ĥ − E |Φ0〉+

∑

kc

〈Φab
ij |Ĥ − E |Φc

k〉C c
k +

∑

cdkl

〈Φab
ij |Ĥ−E |Φcd

kl 〉C cd
kl +

∑

cdeklm

〈Φab
ij |Ĥ−E |Φcde

klm〉C cde
klm+

∑

cdefklmn

〈Φab
ij |Ĥ−E |Φcdef

klmn〉C cdef
klmn = 0,

and we can isolate the coefficients C cd
kl in a similar way as we did

for the coefficients C a
i .

Rewriting the FCI equation, more to add

A standard choice for the first iteration is to set

C ab
ij =

〈ij |v̂ |ab〉
εi + εj − εa − εb

.

At the end we can rewrite our solution of the Schroedinger
equation in terms of n coupled equations for the coefficients CP

H .
This is a very cumbersome way of solving the equation. However,
by using this iterative scheme we can illustrate how we can
compute the various terms in the wave operator or correlation
operator Ĉ . We will later identify the calculation of the various
terms CP

H as parts of different many-body approximations to full CI.
In particular, we can relate this non-linear scheme with Coupled
Cluster theory and many-body perturbation theory.

Summarizing FCI and bringing in approximative methods

If we can diagonalize large matrices, FCI is the method of choice
since:

It gives all eigenvalues, ground state and excited states
The eigenvectors are obtained directly from the coefficients
CP
H which result from the diagonalization

We can easily compute expectation values of other operators,
as well as transition probabilities
Correlations are easy to understand in terms of contributions
to a given operator beyond the Hartree-Fock contribution.
This is the standard approach in many-body theory.

Definition of the correlation energy

The correlation energy is defined as, with a two-body Hamiltonian,

∆E =
∑

ai

〈i |f̂ |a〉C a
i +

∑

abij

〈ij |v̂ |ab〉C ab
ij .

The coefficients C result from the solution of the eigenvalue
problem. The energy of say the ground state is then

E = Eref + ∆E ,

where the so-called reference energy is the energy we obtain from a
Hartree-Fock calculation, that is

Eref = 〈Φ0|Ĥ|Φ0〉.



FCI equation and the coefficients

However, as we have seen, even for a small case like the four first
major shells and a nucleus like oxygen-16, the dimensionality
becomes quickly intractable. If we wish to include single-particle
states that reflect weakly bound systems, we need a much larger
single-particle basis. We need thus approximative methods that
sum specific correlations to infinite order.
Popular methods are

Many-body perturbation theory (in essence a Taylor expansion)
Coupled cluster theory (coupled non-linear equations)
Green’s function approaches (matrix inversion)
Similarity group transformation methods (coupled ordinary
differential equations)

All these methods start normally with a Hartree-Fock basis as the
calculational basis.

Building a many-body basis

Here we will discuss how we can set up a single-particle basis which
we can use in the various parts of our projects, from the simple
pairing model to infinite nuclear matter. We will use here the
simple pairing model to illustrate in particular how to set up a
single-particle basis. We will also use this do discuss standard FCI
approaches like:

1 Standard shell-model basis in one or two major shells
2 Full CI in a given basis and no truncations
3 CISD and CISDT approximations
4 No-core shell model and truncation in excitation energy

Building a many-body basis

An important step in an FCI code is to construct the many-body
basis.
While the formalism is independent of the choice of basis, the
effectiveness of a calculation will certainly be basis dependent.
Furthermore there are common conventions useful to know.
First, the single-particle basis has angular momentum as a good
quantum number. You can imagine the single-particle
wavefunctions being generated by a one-body Hamiltonian, for
example a harmonic oscillator. Modifications include harmonic
oscillator plus spin-orbit splitting, or self-consistent mean-field
potentials, or the Woods-Saxon potential which mocks up the
self-consistent mean-field. For nuclei, the harmonic oscillator,
modified by spin-orbit splitting, provides a useful language for
describing single-particle states.

Building a many-body basis

Each single-particle state is labeled by the following quantum
numbers:

Orbital angular momentum l

Intrinsic spin s = 1/2 for protons and neutrons
Angular momentum j = l ± 1/2
z-component jz (or m)
Some labeling of the radial wavefunction, typically n the
number of nodes in the radial wavefunction, but in the case of
harmonic oscillator one can also use the principal quantum
number N, where the harmonic oscillator energy is
(N + 3/2)~ω.

In this format one labels states by n(l)j , with (l) replaced by a
letter: s for l = 0, p for l = 1, d for l = 2, f for l = 3, and
thenceforth alphabetical.

Building a many-body basis

In practice the single-particle space has to be severely truncated.
This truncation is typically based upon the single-particle energies,
which is the effective energy from a mean-field potential.
Sometimes we freeze the core and only consider a valence space.
For example, one may assume a frozen 4He core, with two protons
and two neutrons in the 0s1/2 shell, and then only allow active
particles in the 0p1/2 and 0p3/2 orbits.
Another example is a frozen 16O core, with eight protons and eight
neutrons filling the 0s1/2, 0p1/2 and 0p3/2 orbits, with valence
particles in the 0d5/2, 1s1/2 and 0d3/2 orbits.
Sometimes we refer to nuclei by the valence space where their last
nucleons go. So, for example, we call 12C a p-shell nucleus, while
26Al is an sd-shell nucleus and 56Fe is a pf -shell nucleus.

Building a many-body basis

There are different kinds of truncations.

For example, one can start with ‘filled’ orbits (almost always
the lowest), and then allow one, two, three... particles excited
out of those filled orbits. These are called 1p-1h, 2p-2h, 3p-3h
excitations.
Alternately, one can state a maximal orbit and allow all
possible configurations with particles occupying states up to
that maximum. This is called full configuration.
Finally, for particular use in nuclear physics, there is the energy
truncation, also called the N~Ω or Nmax truncation.



Building a many-body basis
Here one works in a harmonic oscillator basis, with each major
oscillator shell assigned a principal quantum number
N = 0, 1, 2, 3, .... The N~Ω or Nmax truncation: Any configuration
is given an noninteracting energy, which is the sum of the
single-particle harmonic oscillator energies. (Thus this ignores
spin-orbit splitting.)
Excited state are labeled relative to the lowest configuration by the
number of harmonic oscillator quanta.
This truncation is useful because if one includes all configuration up
to some Nmax , and has a translationally invariant interaction, then
the intrinsic motion and the center-of-mass motion factor. In other
words, we can know exactly the center-of-mass wavefunction.
In almost all cases, the many-body Hamiltonian is rotationally
invariant. This means it commutes with the operators Ĵ2, Ĵz and so
eigenstates will have good J,M. Furthermore, the eigenenergies do
not depend upon the orientation M.
Therefore we can choose to construct a many-body basis which has
fixed M; this is called an M-scheme basis.
Alternately, one can construct a many-body basis which has fixed
J, or a J-scheme basis.

Building a many-body basis

The Hamiltonian matrix will have smaller dimensions (a factor of
10 or more) in the J-scheme than in the M-scheme. On the other
hand, as we’ll show in the next slide, the M-scheme is very easy to
construct with Slater determinants, while the J-scheme basis states,
and thus the matrix elements, are more complicated, almost always
being linear combinations of M-scheme states. J-scheme bases are
important and useful, but we’ll focus on the simpler M-scheme.
The quantum number m is additive (because the underlying group
is Abelian): if a Slater determinant â†i â

†
j â
†
k . . . |0〉 is built from

single-particle states all with good m, then the total

M = mi + mj + mk + . . .

This is not true of J, because the angular momentum group SU(2)
is not Abelian.

Building a many-body basis

The upshot is that
It is easy to construct a Slater determinant with good total M;
It is trivial to calculate M for each Slater determinant;
So it is easy to construct an M-scheme basis with fixed total
M.

Note that the individual M-scheme basis states will not, in general,
have good total J. Because the Hamiltonian is rotationally
invariant, however, the eigenstates will have good J. (The situation
is muddied when one has states of different J that are nonetheless
degenerate.)

Building a many-body basis

Example: two j = 1/2 orbits
Index n l j mj

1 0 0 1/2 -1/2
2 0 0 1/2 1/2
3 1 0 1/2 -1/2
4 1 0 1/2 1/2

Note that the order is arbitrary.

Building a many-body basis

There are
(

4
2

)
= 6 two-particle states, which we list with the

total M:
Occupied M

1,2 0
1,3 -1
1,4 0
2,3 0
2,4 1
3,4 0

There are 4 states with M = 0, and 1 each with M = ±1.

Building a many-body basis

As another example, consider using only single particle states from
the 0d5/2 space. They have the following quantum numbers
Index n l j mj

1 0 2 5/2 -5/2
2 0 2 5/2 -3/2
3 0 2 5/2 -1/2
4 0 2 5/2 1/2
5 0 2 5/2 3/2
6 0 2 5/2 5/2



Building a many-body basis

There are
(

6
2

)
= 15 two-particle states, which we list with the

total M:
Occupied M Occupied M Occupied M

1,2 -4 2,3 -2 3,5 1
1,3 -3 2,4 -1 3,6 2
1,4 -2 2,5 0 4,5 2
1,5 -1 2,6 1 4,6 3
1,6 0 3,4 0 5,6 4

There are 3 states with M = 0, 2 with M = 1, and so on.


