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Many-body perturbation theory
We assume here that we are only interested in the ground state of the system
and expand the exact wave function in term of a series of Slater determinants

|Ψ0〉 = |Φ0〉+
∞∑

m=1
Cm|Φm〉,

where we have assumed that the true ground state is dominated by the solution
of the unperturbed problem, that is

Ĥ0|Φ0〉 = W0|Φ0〉.

The state |Ψ0〉 is not normalized, rather we have used an intermediate normal-
ization 〈Φ0|Ψ0〉 = 1 since we have 〈Φ0|Φ0〉 = 1.

Many-body perturbation theory
The Schroedinger equation is

Ĥ|Ψ0〉 = E|Ψ0〉,

and multiplying the latter from the left with 〈Φ0| gives

〈Φ0|Ĥ|Ψ0〉 = E〈Φ0|Ψ0〉 = E,

and subtracting from this equation

〈Ψ0|Ĥ0|Φ0〉 = W0〈Ψ0|Φ0〉 = W0,

and using the fact that the both operators Ĥ and Ĥ0 are hermitian results in

∆E = E −W0 = 〈Φ0|ĤI |Ψ0〉,

which is an exact result. We call this quantity the correlation energy.
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Many-body perturbation theory
This equation forms the starting point for all perturbative derivations. However,
as it stands it represents nothing but a mere formal rewriting of Schroedinger’s
equation and is not of much practical use. The exact wave function |Ψ0〉 is
unknown. In order to obtain a perturbative expansion, we need to expand the
exact wave function in terms of the interaction ĤI .

Here we have assumed that our model space defined by the operator P̂ is
one-dimensional, meaning that

P̂ = |Φ0〉〈Φ0|,

and

Q̂ =
∞∑

m=1
|Φm〉〈Φm|.

Many-body perturbation theory
We can thus rewrite the exact wave function as

|Ψ0〉 = (P̂ + Q̂)|Ψ0〉 = |Φ0〉+ Q̂|Ψ0〉.

Going back to the Schrödinger equation, we can rewrite it as, adding and a
subtracting a term ω|Ψ0〉 as(

ω − Ĥ0

)
|Ψ0〉 =

(
ω − E + ĤI

)
|Ψ0〉,

where ω is an energy variable to be specified later.

Many-body perturbation theory

We assume also that the resolvent of
(
ω − Ĥ0

)
exits, that is it has an inverse

which defined the unperturbed Green’s function as(
ω − Ĥ0

)−1
= 1(

ω − Ĥ0

) .
We can rewrite Schroedinger’s equation as

|Ψ0〉 = 1
ω − Ĥ0

(
ω − E + ĤI

)
|Ψ0〉,

and multiplying from the left with Q̂ results in

Q̂|Ψ0〉 = Q̂

ω − Ĥ0

(
ω − E + ĤI

)
|Ψ0〉,

which is possible since we have defined the operator Q̂ in terms of the eigenfunc-
tions of Ĥ.
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Many-body perturbation theory
These operators commute meaning that

Q̂
1(

ω − Ĥ0

) Q̂ = Q̂
1(

ω − Ĥ0

) = Q̂(
ω − Ĥ0

) .
With these definitions we can in turn define the wave function as

|Ψ0〉 = |Φ0〉+ Q̂

ω − Ĥ0

(
ω − E + ĤI

)
|Ψ0〉.

This equation is again nothing but a formal rewrite of Schrödinger’s equation and
does not represent a practical calculational scheme. It is a non-linear equation in
two unknown quantities, the energy E and the exact wave function |Ψ0〉. We can
however start with a guess for |Ψ0〉 on the right hand side of the last equation.

Many-body perturbation theory
The most common choice is to start with the function which is expected to
exhibit the largest overlap with the wave function we are searching after, namely
|Φ0〉. This can again be inserted in the solution for |Ψ0〉 in an iterative fashion
and if we continue along these lines we end up with

|Ψ0〉 =
∞∑

i=0

{
Q̂

ω − Ĥ0

(
ω − E + ĤI

)}i

|Φ0〉,

for the wave function and

∆E =
∞∑

i=0
〈Φ0|ĤI

{
Q̂

ω − Ĥ0

(
ω − E + ĤI

)}i

|Φ0〉,

which is now a perturbative expansion of the exact energy in terms of the
interaction ĤI and the unperturbed wave function |Ψ0〉.

Many-body perturbation theory
In our equations for |Ψ0〉 and ∆E in terms of the unperturbed solutions |Φi〉 we
have still an undetermined parameter ω and a dependecy on the exact energy E.
Not much has been gained thus from a practical computational point of view.

Many-body perturbation theory
In Brilluoin-Wigner perturbation theory it is customary to set ω = E. This
results in the following perturbative expansion for the energy ∆E

∆E =
∞∑

i=0
〈Φ0|ĤI

{
Q̂

ω − Ĥ0

(
ω − E + ĤI

)}i

|Φ0〉 =
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〈Φ0|

(
ĤI + ĤI

Q̂

E − Ĥ0
ĤI + ĤI

Q̂

E − Ĥ0
ĤI

Q̂

E − Ĥ0
ĤI + . . .

)
|Φ0〉.

∆E =
∞∑

i=0
〈Φ0|ĤI

{
Q̂

ω − Ĥ0

(
ω − E + ĤI

)}i

|Φ0〉 =

〈Φ0|

(
ĤI + ĤI

Q̂

E − Ĥ0
ĤI + ĤI

Q̂

E − Ĥ0
ĤI

Q̂

E − Ĥ0
ĤI + . . .

)
|Φ0〉.

This expression depends however on the exact energy E and is again not very
convenient from a practical point of view. It can obviously be solved iteratively,
by starting with a guess for E and then solve till some kind of self-consistency
criterion has been reached.

Actually, the above expression is nothing but a rewrite again of the full
Schrödinger equation.

Many-body perturbation theory
Defining e = E − Ĥ0 and recalling that Ĥ0 commutes with Q̂ by construction
and that Q̂ is an idempotent operator Q̂2 = Q̂. Using this equation in the above
expansion for ∆E we can write the denominator

Q̂
1

ê− Q̂ĤIQ̂
=

Q̂

[
1
ê

+ 1
ê
Q̂ĤIQ̂

1
ê

+ 1
ê
Q̂ĤIQ̂

1
ê
Q̂ĤIQ̂

1
ê

+ . . .

]
Q̂.

Many-body perturbation theory
Inserted in the expression for ∆E leads to

∆E = 〈Φ0|ĤI + ĤIQ̂
1

E − Ĥ0 − Q̂ĤIQ̂
Q̂ĤI |Φ0〉.

In RS perturbation theory we set ω = W0 and obtain the following expression
for the energy difference

∆E =
∞∑

i=0
〈Φ0|ĤI

{
Q̂

W0 − Ĥ0

(
ĤI −∆E

)}i

|Φ0〉 =

〈Φ0|

(
ĤI + ĤI

Q̂

W0 − Ĥ0
(ĤI −∆E) + ĤI

Q̂

W0 − Ĥ0
(ĤI −∆E) Q̂

W0 − Ĥ0
(ĤI −∆E) + . . .

)
|Φ0〉.
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Many-body perturbation theory
Recalling that Q̂ commutes with Ĥ0 and since ∆E is a constant we obtain that

Q̂∆E|Φ0〉 = Q̂∆E|Q̂Φ0〉 = 0.

Inserting this results in the expression for the energy results in

∆E = 〈Φ0|

(
ĤI + ĤI

Q̂

W0 − Ĥ0
ĤI + ĤI

Q̂

W0 − Ĥ0
(ĤI −∆E) Q̂

W0 − Ĥ0
ĤI + . . .

)
|Φ0〉.

Many-body perturbation theory
We can now this expression in terms of a perturbative expression in terms of ĤI

where we iterate the last expression in terms of ∆E

∆E =
∞∑

i=1
∆E(i).

We get the following expression for ∆E(i)

∆E(1) = 〈Φ0|ĤI |Φ0〉,

which is just the contribution to first order in perturbation theory,

∆E(2) = 〈Φ0|ĤI
Q̂

W0 − Ĥ0
ĤI |Φ0〉,

which is the contribution to second order.

Many-body perturbation theory

∆E(3) = 〈Φ0|ĤI
Q̂

W0 − Ĥ0
ĤI

Q̂

W0 − Ĥ0
ĤIΦ0〉−〈Φ0|ĤI

Q̂

W0 − Ĥ0
〈Φ0|ĤI |Φ0〉

Q̂

W0 − Ĥ0
ĤI |Φ0〉,

being the third-order contribution.

Interpreting the correlation energy and the wave operator
In the shell-model lectures we showed that we could rewrite the exact state
function for say the ground state, as a linear expansion in terms of all possible
Slater determinants. That is, we define the ansatz for the ground state as

|Φ0〉 =

∏
i≤F

â†i

 |0〉,
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where the index i defines different single-particle states up to the Fermi level.
We have assumed that we have N fermions. A given one-particle-one-hole (1p1h)
state can be written as

|Φa
i 〉 = â†aâi|Φ0〉,

while a 2p2h state can be written as

|Φab
ij 〉 = â†aâ

†
bâj âi|Φ0〉,

and a general ApAh state as

|Φabc...
ijk...〉 = â†aâ

†
bâ
†
c . . . âkâj âi|Φ0〉.

Interpreting the correlation energy and the wave operator
We use letters ijkl . . . for states below the Fermi level and abcd . . . for states
above the Fermi level. A general single-particle state is given by letters pqrs . . . .

We can then expand our exact state function for the ground state as

|Ψ0〉 = C0|Φ0〉+
∑
ai

Ca
i |Φa

i 〉+
∑
abij

Cab
ij |Φab

ij 〉+ · · · = (C0 + Ĉ)|Φ0〉,

where we have introduced the so-called correlation operator

Ĉ =
∑
ai

Ca
i â
†
aâi +

∑
abij

Cab
ij â
†
aâ
†
bâj âi + . . .

Since the normalization of Ψ0 is at our disposal and since C0 is by hypothesis
non-zero, we may arbitrarily set C0 = 1 with corresponding proportional changes
in all other coefficients. Using this so-called intermediate normalization we have

〈Ψ0|Φ0〉 = 〈Φ0|Φ0〉 = 1,

resulting in
|Ψ0〉 = (1 + Ĉ)|Φ0〉.

Interpreting the correlation energy and the wave operator
In a shell-model calculation, the unknown coefficients in Ĉ are the eigenvectors
which result from the diagonalization of the Hamiltonian matrix.

How can we use perturbation theory to determine the same coefficients? Let
us study the contributions to second order in the interaction, namely

∆E(2) = 〈Φ0|ĤI
Q̂

W0 − Ĥ0
ĤI |Φ0〉.

The intermediate states given by Q̂ can at most be of a 2p− 2h nature if we
have a two-body Hamiltonian. This means that second order in the perturbation
theory can have 1p− 1h and 2p− 2h at most as intermediate states. When we
diagonalize, these contributions are included to infinite order. This means that
higher-orders in perturbation theory bring in more complicated correlations.
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Interpreting the correlation energy and the wave operator
If we limit the attention to a Hartree-Fock basis, then we have that 〈Φ0|ĤI |2p−
2h〉 is the only contribution and the contribution to the energy reduces to

∆E(2) = 1
4
∑
abij

〈ij|v̂|ab〉 〈ab|v̂|ij〉
εi + εj − εa − εb

.

Interpreting the correlation energy and the wave operator
If we compare this to the correlation energy obtained from full configuration
interaction theory with a Hartree-Fock basis, we found that

E − E0 = ∆E =
∑
abij

〈ij|v̂|ab〉Cab
ij ,

where the energy E0 is the reference energy and ∆E defines the so-called
correlation energy.

We see that if we set

Cab
ij = 1

4
〈ab|v̂|ij〉

εi + εj − εa − εb
,

we have a perfect agreement between FCI and MBPT. However, FCI includes
such 2p − 2h correlations to infinite order. In order to make a meaningful
comparison we would at least need to sum such correlations to infinite order in
perturbation theory.

Interpreting the correlation energy and the wave operator
Summing up, we can see that

• MBPT introduces order-by-order specific correlations and we make com-
parisons with exact calculations like FCI

• At every order, we can calculate all contributions since they are well-known
and either tabulated or calculated on the fly.

• MBPT is a non-variational theory and there is no guarantee that higher
orders will improve the convergence.

• However, since FCI calculations are limited by the size of the Hamiltonian
matrices to diagonalize (today’s most efficient codes can attach dimension-
alities of ten billion basis states, MBPT can function as an approximative
method which gives a straightforward (but tedious) calculation recipe.

• MBPT has been widely used to compute effective interactions for the
nuclear shell-model.

• But there are better methods which sum to infinite order important corre-
lations. Coupled cluster theory is one of these methods.
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