

- Wick's theorem
- Thouless' theorem and analysis of the Hartree-Fock equations
using second quantization
- Examples on how to use bit representations for Slater determinants

Second quantization

In Eq. (1) the operator a_{α}^{\dagger} acts on the vacuum state $|0\rangle$, which does not contain any particles. Alternatively, we could define a closed-shell nucleus or atom as our new vacuum, but then we need to introduce the particle-hole formalism, see the discussion to come. In Eq. (2) a_{α}^{\dagger} acts on an antisymmetric n-particle state and creates an antisymmetric ($n+1$)-particle state, where the one-body state φ_{α} is occupied, under the condition that $\alpha \neq \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$. ℓ, of the creation operators acting on the vacuum state.

$$
\left|\alpha_{1} \ldots \alpha_{n}\right\rangle_{\mathrm{AS}}=a_{\alpha_{1}}^{\dagger} a_{\alpha_{2}}^{\dagger} \ldots a_{\alpha_{n}}^{\dagger}|0\rangle
$$

Second quantization

It is easy to derive the commutation and anticommutation rules for the fermionic creation operators a_{α}^{\dagger}. Using the antisymmetry of the states (3)
$\left|\alpha_{1} \ldots \alpha_{i} \ldots \alpha_{k} \ldots \alpha_{n}\right\rangle_{\mathrm{AS}}=-\left|\alpha_{1} \ldots \alpha_{k} \ldots \alpha_{i} \ldots \alpha_{n}\right\rangle_{\mathrm{AS}}$
we obtain
$a_{\alpha_{i}}^{\dagger} a_{\alpha_{k}}^{\dagger}=-a_{\alpha_{k}}^{\dagger} a_{\alpha_{i}}^{\dagger}$

Second quantization

Using the Pauli principle
$\left|\alpha_{1} \ldots \alpha_{i} \ldots \alpha_{i} \ldots \alpha_{n}\right\rangle_{\mathrm{AS}}=0$
it follows that
$a_{\alpha_{i}}^{\dagger} a_{\alpha_{i}}^{\dagger}=0$
If we combine Eqs. (5) and (7), we obtain the well-known anti-commutation rule

$$
a_{\alpha}^{\dagger} a_{\beta}^{\dagger}+a_{\beta}^{\dagger} a_{\alpha}^{\dagger} \equiv\left\{a_{\alpha}^{\dagger}, a_{\beta}^{\dagger}\right\}=0
$$

The hermitian conjugate of a_{α}^{\dagger} is

$$
a_{\alpha}=\left(a_{\alpha}^{\dagger}\right)^{\dagger}
$$

If we take the hermitian conjugate of Eq. (8), we arrive at
$\left\{a_{\alpha}, a_{\beta}\right\}=0$

What is the physical interpretation of the operator a_{α} and what is the effect of a_{α} on a given state $\left|\alpha_{1} \alpha_{2} \ldots \alpha_{n}\right\rangle_{\text {As }}$? Consider the
following matrix element

$$
\begin{equation*}
\left\langle\alpha_{1} \alpha_{2} \ldots \alpha_{n}\right| a_{\alpha}\left|\alpha_{1}^{\prime} \alpha_{2}^{\prime} \ldots \alpha_{m}^{\prime}\right\rangle \tag{11}
\end{equation*}
$$

where both sides are antisymmetric. We distinguish between two cases. The first (1) is when $\alpha \in\left\{\alpha_{i}\right\}$. Using the Pauli principle of Eq. (6) it follows

The second (2) case is wa $\alpha\left\{a^{2}\right\}$. It folows that
The second (2) case is when $\alpha \notin\left\{\alpha_{i}\right\}$. It follows that an hermitian conjugation
$\left\langle\alpha_{1} \alpha_{2} \ldots \alpha_{n}\right| a_{\alpha}=\left\langle\alpha \alpha_{1} \alpha_{2} \ldots \alpha_{n}\right|$
(13)

Second quantization

For the last case, the minus and plus signs apply when the sequence $\alpha, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ and $\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{n+1}^{\prime}$ are related to each other via even and odd permutations. If we assume that $\alpha \notin\left\{\alpha_{i}\right\}$ we obtain

$$
\left\langle\alpha_{1} \alpha_{2} \ldots \alpha_{n}\right| a_{\alpha}\left|\alpha_{1}^{\prime} \alpha_{2}^{\prime} \ldots \alpha_{n+1}^{\prime}\right\rangle=0
$$

when $\alpha \in\left\{\alpha_{i}^{\prime}\right\}$. If $\alpha \notin\left\{\alpha_{i}^{\prime}\right\}$, we obtain

and in particular

Second quantization

If $\left\{\alpha \alpha_{i}\right\}=\left\{\alpha_{i}^{\prime}\right\}$, performing the right permutations, the sequence $\alpha, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ is identical with the sequence $\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{n+1}^{\prime}$. This results in
$\left\langle\alpha_{1} \alpha_{2} \ldots \alpha_{n}\right| a_{\alpha}\left|\alpha \alpha_{1} \alpha_{2} \ldots \alpha_{n}\right\rangle=1$
(18)
and thus
$a_{\alpha}\left|\alpha \alpha_{1} \alpha_{2} \ldots \alpha_{n}\right\rangle=\left|\alpha_{1} \alpha_{2} \ldots \alpha_{n}\right\rangle$

Second quantization

The action of the operator a_{α} from the left on a state vector is to remove one particle in the state α. If the state vector does not contain the single-particle state α, the outcome of the operation is zero. The operator a_{α} is normally called for a destruction or

The next step is to establish the commutator algebra of a_{α}^{\dagger} and a_{β}.

The action of the anti-commutator $\left\{a_{\alpha}^{\dagger}, a_{\alpha}\right\}$ on a given n-particle state is
$a_{\alpha}^{\dagger} a_{\alpha} \underbrace{\left|\alpha_{1} \alpha_{2} \ldots \alpha_{n}\right\rangle}_{\neq \alpha}=0$
$a_{\alpha} a_{\alpha}^{\dagger} \underbrace{\left|\alpha_{1} \alpha_{2} \ldots \alpha_{n}\right\rangle}_{\neq \alpha}=a_{\alpha} \underbrace{\left|\alpha \alpha_{1} \alpha_{2} \ldots \alpha_{n}\right\rangle}_{\neq \alpha}=\underbrace{\left|\alpha_{1} \alpha_{2} \ldots \alpha_{n}\right\rangle}_{\neq \alpha}$
if the single-particle state α is not contained in the state.
rome

If it is present we arrive at

$a_{\alpha}^{\dagger} \alpha_{\alpha}\left|\alpha_{1} \alpha_{2} \ldots \alpha_{k} \alpha \alpha_{k+1} \ldots \alpha_{n-1}\right\rangle=a_{\alpha}^{\dagger} a_{\alpha}(-1)^{k}\left|\alpha \alpha_{1} \alpha_{2} \ldots \alpha_{n-1}\right\rangle$

$$
=(-1)^{k}\left|\alpha \alpha_{1} \alpha_{2} \ldots \alpha_{n-1}\right\rangle=\left|\alpha_{1} \alpha_{2} \ldots \alpha_{k} \alpha \alpha_{k+1} \ldots \alpha_{n-1}\right\rangle
$$

$$
a_{\alpha} a_{\alpha}^{\dagger}\left|\alpha_{1} \alpha_{2} \ldots \alpha_{k} \alpha \alpha_{k+1} \ldots \alpha_{n-1}\right\rangle=0
$$

From Eqs. (20) and (21) we arrive at

$$
\left\{a_{\alpha}^{\dagger}, a_{\alpha}\right\}=a_{\alpha}^{\dagger} a_{\alpha}+a_{\alpha} a_{\alpha}^{\dagger}=1
$$

Second quantization

Second quantization

The first case results in
$\partial_{\alpha}^{\dagger} a_{\beta}\left|\alpha \beta \alpha_{1} \alpha_{2} \ldots \alpha_{n-2}\right\rangle=0$
$a_{\beta} a_{\alpha}^{\dagger}\left|\alpha \beta \alpha_{1} \alpha_{2} \ldots \alpha_{n-2}\right\rangle=0$
The action of $\left\{a_{\alpha}^{\dagger}, a_{\beta}\right\}$, with $\alpha \neq \beta$ on a given state yields three possibilities. The first case is a state vector which contains both α and β, then either α or β and finally none of them.
while the second case gives

$$
a_{\alpha}^{\dagger} a_{\beta}|\beta \underbrace{\alpha_{1} \alpha_{2} \ldots \alpha_{n-1}}_{\neq \alpha}\rangle=|\alpha \underbrace{\alpha_{1} \alpha_{2} \ldots \alpha_{n-1}}_{\neq \alpha}\rangle
$$

$a_{\beta} a_{\alpha}^{\dagger}|\beta \underbrace{\alpha_{1} \alpha_{2} \ldots \alpha_{n-1}}_{\neq \alpha}\rangle=a_{\beta}|\alpha \underbrace{\beta \alpha_{1} \alpha_{2} \ldots \alpha_{n-1}}_{\neq \alpha}\rangle$

$$
=-\mid \alpha \underbrace{\substack{\neq \alpha \\ \alpha_{1} \alpha_{2} \ldots \alpha_{n-1}}}_{\neq \alpha}
$$

$$
\neq \alpha
$$

Second quantization

We can summarize our findings in Eqs. (22) and (26) as

$$
\begin{equation*}
\left\{a_{\alpha}^{\dagger}, a_{\beta}\right\}=\delta_{\alpha \beta} \tag{27}
\end{equation*}
$$

with $\delta_{\alpha \beta}$ is the Kronecker δ-symbol.
The properties of the creation and annihilation operators can be summarized as (for fermions)
$\mathrm{a}_{\alpha}^{\dagger}\left|\alpha_{1} \ldots \alpha_{n}\right\rangle_{\mathrm{AS}} \equiv\left|\alpha \alpha_{1} \ldots \alpha_{n}\right\rangle_{\mathrm{AS}}$.
from which follows
$\left|\alpha_{1} \ldots \alpha_{n}\right\rangle_{\mathrm{AS}}=a_{\alpha_{1}}^{\dagger} a_{\alpha_{2}}^{\dagger} \ldots a_{\alpha_{n}}^{\dagger}|0\rangle$.

The hermitian conjugate has the folowing properties

Finally we found
$a_{\alpha} \underbrace{\mid \alpha_{1}^{\prime} \alpha_{2}^{\prime} \ldots \alpha_{n+1}^{\prime}}\rangle \neq \alpha=0$, in particular $a_{\alpha}|0\rangle=0$,
and
$a_{\alpha}\left|\alpha \alpha_{1} \alpha_{2} \ldots \alpha_{n}\right\rangle=\left|\alpha_{1} \alpha_{2} \ldots \alpha_{n}\right\rangle$,
and the corresponding commutator algebra
$\left\{a_{\alpha}^{\dagger}, a_{\beta}^{\dagger}\right\}=\left\{a_{\alpha}, a_{\beta}\right\}=0 \quad\left\{a_{\alpha}^{\dagger}, a_{\beta}\right\}=\delta_{\alpha \beta}$.

A very useful operator is the so-called number-operator. Most physics cases we will study in this text conserve the total number of particles. The number operator is therefore a useful quantity which allows us to test that our many-body formalism conserves the number of particles. In for example (d, p) or (p, d) reactions it is important to be able to describe quantum mechanical states where particles get added or removed. A creation operator a_{α}^{\dagger} adds one particle to the single-particle state α of a give many-body state , a_{α} ress a paricle from single-particle state α.

Second quantization

Let us consider an operator proportional with $\mathrm{a}_{\alpha}^{\dagger} a_{\beta}$ and $\alpha=\beta$. It acts on an n-particle state resulting in

$$
a_{\alpha}^{\dagger} a_{\alpha}\left|\alpha_{1} \alpha_{2} \ldots \alpha_{n}\right\rangle= \begin{cases}0 & \alpha \notin\left\{\alpha_{i}\right\} \\ \left|\alpha_{1} \alpha_{2} \ldots \alpha_{n}\right\rangle & \alpha \in\left\{\alpha_{i}\right\}\end{cases}
$$

Summing over all possible one-particle states we arrive at

$$
\left(\sum_{\alpha} a_{\alpha}^{\dagger} a_{\alpha}\right)\left|\alpha_{1} \alpha_{2} \ldots \alpha_{n}\right\rangle=n\left|\alpha_{1} \alpha_{2} \ldots \alpha_{n}\right\rangle
$$

Second quantization

The operator

$$
\hat{N}=\sum_{\alpha} a_{\alpha}^{\dagger} a_{\alpha}
$$

is called the number operator since it counts the number of particles in a given state vector when it acts on the different single-particle states. It acts on one single-particle state at the time single-particle states. It acts on one single-particle state at the time
and falls therefore under category one-body operators. Next we and falls therefore under category one-body operators. Next we
look at another important one-body operator, namely \hat{H}_{0} and study its operator form in the occupation number representation.

Second quantization

We want to obtain an expression for a one-body operator which conserves the number of particles. Here we study the one-body operator for the kinetic energy plus an eventual external one-body potential. The action of this operator on a particular n-body state with its pertinent expectation value has already been studied in coordinate space. In coordinate space the operator reads

$$
\hat{H}_{0}=\sum_{i} \hat{h}_{0}\left(x_{i}\right)
$$

and the anti-symmetric n-particle Slater determinant is defined as $\Phi\left(x_{1}, x_{2}, \ldots, x_{n}, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)=\frac{1}{\sqrt{n!}} \sum_{p}(-1)^{p} \hat{P} \psi_{\alpha_{1}}\left(x_{1}\right) \psi_{\alpha_{2}}\left(x_{2}\right)$.

Second quantization

Defining

$$
\hat{h}_{0}\left(x_{i}\right) \psi_{\alpha_{i}}\left(x_{i}\right)=\sum_{\alpha_{k}^{\prime}} \psi_{\alpha_{k}^{\prime}}\left(x_{i}\right)\left\langle\alpha_{k}^{\prime}\right| \hat{h}_{0}\left|\alpha_{k}\right\rangle
$$

we can easily evaluate the action of \hat{H}_{0} on each product one-particle functions in Slater determinant. From Eq. (32) w obtain the following result without permuting any particle pair
$\left(\sum_{i} \hat{h}_{0}\left(x_{i}\right)\right) \psi_{\alpha_{1}}\left(x_{1}\right) \psi_{\alpha_{2}}\left(x_{2}\right) \ldots \psi_{\alpha_{n}}\left(x_{n}\right)$
$=\sum\left\langle\alpha_{1}^{\prime}\right| \hat{h}_{0}\left|\alpha_{1}\right\rangle \psi_{\alpha_{1}^{\prime}}\left(x_{1}\right) \psi_{\alpha_{2}}\left(x_{2}\right) \ldots \psi_{\alpha_{n}}\left(x_{n}\right)$
$+\sum_{\alpha_{2}^{\prime}}\left\langle\alpha_{2}^{\prime}\right| \hat{h}_{0}\left|\alpha_{2}\right\rangle \psi_{\alpha_{1}}\left(x_{1}\right) \psi_{\alpha_{2}^{\prime}}\left(x_{2}\right) \ldots \psi_{\alpha_{n}}\left(x_{n}\right)$
$+\ldots$
$+\sum_{\alpha_{n}^{\prime}}\left\langle\alpha_{n}^{\prime}\right| \hat{h}_{0}\left|\alpha_{n}\right\rangle \psi_{\alpha_{1}}\left(x_{1}\right) \psi_{\alpha_{2}}\left(x_{2}\right) \ldots \psi_{\alpha_{n}^{\prime}}\left(x_{n}\right)$

If we interchange particles 1 and 2 we obtain

	$\left(\sum_{i} \hat{h}_{0}\left(x_{i}\right)\right) \psi_{\alpha_{1}}\left(x_{1}\right) \psi_{\alpha_{1}}\left(x_{2}\right) \ldots \psi_{\alpha_{n}}\left(x_{n}\right)$
$=$	$\sum_{\alpha_{2}^{\prime}}\left\langle\alpha_{2}^{\prime}\right\| \hat{h}_{0}\left\|\alpha_{2}\right\rangle \psi_{\alpha_{1}}\left(x_{2}\right) \psi_{\alpha_{2}^{\prime}}\left(x_{1}\right) \ldots \psi_{\alpha_{n}}\left(x_{n}\right)$
+	$\sum_{\alpha_{1}^{\prime}}\left\langle\alpha_{1}^{\prime}\right\| \hat{h}_{0}\left\|\alpha_{1}\right\rangle \psi_{\alpha_{1}}\left(x_{2}\right) \psi_{\alpha_{2}}\left(x_{1}\right) \ldots \psi_{\alpha_{n}}\left(x_{n}\right)$
+	\ldots
+	$\sum_{\alpha_{n}^{\prime}}\left\langle\alpha_{n}^{\prime}\right\| \hat{h}_{0}\left\|\alpha_{n}\right\rangle \psi_{\alpha_{1}}\left(x_{2}\right) \psi_{\alpha_{1}}\left(x_{2}\right) \ldots \psi_{\alpha_{n}^{\prime}}\left(x_{n}\right)$

We can continue by computing all possible permutations. We rewrite also our Slater determinant in its second quantized form and skip the dependence on the quantum numbers x_{i}. Summing up all contributions and taking care of all phases $(-1)^{p}$ we arrive at
$\hat{H}_{0}\left|\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\rangle$
$=\sum_{\alpha_{1}^{\prime}}\left\langle\alpha_{1}^{\prime}\right| \hat{h}_{0}\left|\alpha_{1}\right\rangle\left|\alpha_{1}^{\prime} \alpha_{2} \ldots \alpha_{n}\right\rangle$
$+\sum_{\alpha_{1}}^{\alpha_{1}^{\prime}}$
$+\sum_{\alpha_{2}^{\prime}}\left\langle\alpha_{2}^{\prime}\right| \hat{h}_{0}\left|\alpha_{2}\right\rangle\left|\alpha_{1} \alpha_{2}^{\prime} \ldots \alpha_{n}\right\rangle$
$+$.
$+\sum_{\alpha_{n}^{\prime}}\left\langle\alpha_{n}^{\prime}\right| \hat{h}_{0}\left|\alpha_{n}\right\rangle\left|\alpha_{1} \alpha_{2} \ldots \alpha_{n}^{\prime}\right\rangle \quad$ (35)

Second quantization

In Eq. (35) we have expressed the action of the one-body operator of Eq. (31) on the n-body state in its second quantized form. This equation can be further manipulated if we use the properties of the creation and annihilation operator on each primed quantum number, that is
$\left|\alpha_{1} \alpha_{2} \ldots \alpha_{k}^{\prime} \ldots \alpha_{n}\right\rangle=a_{\alpha_{k}^{\prime}}^{\dagger} a_{\alpha_{k}}\left|\alpha_{1} \alpha_{2} \ldots \alpha_{k} \ldots \alpha_{n}\right\rangle$
Inserting this in the right-hand side of Eq. (35) results in
$\hat{H}_{0}\left|\alpha_{1} \alpha_{2} \ldots \alpha_{n}\right\rangle=\sum_{\alpha^{\prime}}\left\langle\alpha_{1}^{\prime}\right| \hat{h}_{0}\left|\alpha_{1}\right\rangle \partial_{\alpha_{1}^{\prime}}^{\dagger} a_{\alpha_{1}}\left|\alpha_{1} \alpha_{2} \ldots \alpha_{n}\right\rangle$
$+\sum_{\alpha_{2}^{\prime}}\left\langle\alpha_{2}^{\prime}\right| \hat{h}_{0}\left|\alpha_{2}\right\rangle a_{\alpha_{2}^{\prime}}^{\dagger} a_{\alpha_{2}}\left|\alpha_{1} \alpha_{2} \ldots \alpha_{n}\right\rangle$
$+$
$+\sum_{\alpha^{\prime}}\left\langle\alpha_{n}^{\prime}\right| \hat{h}_{0}\left|\alpha_{n}\right\rangle a_{\alpha_{n}^{\prime}}^{\dagger} a_{\alpha_{n}}\left|\alpha_{1} \alpha_{2} \ldots \alpha_{n}\right\rangle$ ${ }^{\alpha_{n}^{\prime \prime}}$

Second quantization

In the number occupation representation or second quantization we get the following expression for a one-body operator which conserves the number of particles

$$
\hat{H}_{0}=\sum_{\alpha \beta}\langle\alpha| \hat{h}_{0}|\beta\rangle a_{\alpha}^{\dagger} a_{\beta}
$$

Obviously, \hat{H}_{0} can be replaced by any other one-body operato which preserved the number of particles. The stucture of the operator is therefore not limited to say the kinetic or single-particle energy only.
The opearator \hat{H}_{0} takes a particle from the single-particle state β to the single-particle state α with a probability for the transition given by the expectation value $\langle\alpha| \hat{h}_{0}|\beta\rangle$.

Second quantization

It is instructive to verify Eq. (38) by computing the expectation value of \hat{H}_{0} between two single-particle states

$$
\begin{equation*}
\left\langle\alpha_{1}\right| \hat{h}_{0}\left|\alpha_{2}\right\rangle=\sum_{\alpha \beta}\langle\alpha| \hat{h}_{0}|\beta\rangle\langle 0| a_{\alpha_{1}} a_{\alpha}^{\dagger} \alpha_{\beta} a_{\alpha_{2}}^{\dagger}|0\rangle \tag{39}
\end{equation*}
$$

Operators in second quantization

Let us now derive the expression for our two-body interaction part, which also conserves the number of particles. We can proceed in exactly the same way as for the one-body operator. In the coordinate representation following expression

$$
\begin{equation*}
\hat{H}_{I}=\sum_{i<j} V\left(x_{i}, x_{j}\right) \tag{43}
\end{equation*}
$$

where the summation runs over distinct pairs. The term V can be
We can now let $\hat{H}_{\text {}}$ act on all terms in the linear combination for
$\left|\alpha_{1} \alpha_{2} \ldots \alpha_{n}\right\rangle$. Without any permutations we have
an interaction model for the nucleon-nucleon interaction or th interaction between two electrons. It can also include additional two-body interaction terms.
The action of this operator
The action of this operator on a product of two single-particle functions is defined as
$V\left(x_{i}, x_{j}\right) \psi_{\alpha_{k}}\left(x_{i}\right) \psi_{\alpha_{l}}\left(x_{j}\right)=\sum_{\alpha_{k}^{\prime} \alpha_{l}^{\prime}} \psi_{\alpha_{k}}^{\prime}\left(x_{i}\right) \psi_{\alpha_{l}}^{\prime}\left(x_{j}\right)\left\langle\alpha_{k}^{\prime} \alpha_{l}^{\prime}\right| \hat{v}\left|\alpha_{k} \alpha_{l}\right\rangle \quad$ (44)
$\left(\sum_{i<j} V\left(x_{i}, x_{j}\right)\right) \psi_{\alpha_{1}}\left(x_{1}\right) \psi_{\alpha_{2}}\left(x_{2}\right) \ldots \psi_{\alpha_{n}}\left(x_{n}\right)$
$=\sum_{\alpha_{1}^{\prime} \alpha_{2}^{\prime}}\left\langle\alpha_{1}^{\prime} \alpha_{2}^{\prime}\right| \hat{v}\left|\alpha_{1} \alpha_{2}\right\rangle \psi_{\alpha_{1}}^{\prime}\left(x_{1}\right) \psi_{\alpha_{2}}^{\prime}\left(x_{2}\right) \ldots \psi_{\alpha_{n}}\left(x_{n}\right)$,
$+\sum^{+}\left\langle\alpha_{1}^{\prime} \alpha_{n}^{\prime}\right| \hat{v}\left|\alpha_{1} \alpha_{n}\right\rangle \psi_{\alpha_{1}}^{\prime}\left(x_{1}\right) \psi_{\alpha_{2}}\left(x_{2}\right) \ldots \psi_{\alpha_{n}}^{\prime}\left(x_{n}\right)$
$\sum_{\alpha_{1}^{\prime} \alpha_{n}^{\prime}}$
$+\sum_{\alpha_{1}}\left\langle\alpha_{2}^{\prime} \alpha_{n}^{\prime}\right| \hat{v}\left|\alpha_{2} \alpha_{n}\right\rangle \psi_{\alpha_{1}}\left(x_{1}\right) \psi_{\alpha_{2}}^{\prime}\left(x_{2}\right) \ldots \psi_{\alpha_{n}}^{\prime}\left(x_{n}\right)$
$\sum_{\alpha_{2}^{\prime} \alpha_{n}^{\prime}}$

+ .
where on the rhs we have a term for each distinct pairs.

Operators in second quantization
 We introduce second quantization via the relation
 $$
=\left|\alpha_{1} \alpha_{2} \ldots \alpha_{k}^{\prime} \ldots \alpha_{l}^{\prime} \ldots \alpha_{n}\right\rangle
$$

Operators in second quantization
Inserting this in (46) gives $\begin{align*} H_{l}\left\|\alpha_{1} \alpha_{2} \ldots \alpha_{n}\right\rangle & =\sum_{\alpha_{1}^{\prime}, \alpha_{2}^{\prime}}\left\langle\alpha_{1}^{\prime} \alpha_{2}^{\prime}\right\| \hat{v}\left\|\alpha_{1} \alpha_{2}\right\rangle \partial_{\alpha_{1}^{\prime}}^{\dagger}{ }_{2}^{\prime} \dagger \alpha_{2}^{\prime} \\ & =\alpha_{\alpha_{2}} a_{\alpha_{1}}\left\|\alpha_{1} \alpha_{2} \ldots \alpha_{n}\right\rangle \\ & =\sum_{\alpha_{1}^{\prime}, \alpha_{n}^{\prime}}\left\langle\alpha_{1}^{\prime} \alpha_{n}^{\prime}\right\| \hat{v}\left\|\alpha_{1} \alpha_{n}\right\rangle a_{\alpha_{1}^{\prime}}^{\dagger} a_{\alpha_{n}^{\prime}}^{\dagger} \alpha_{\alpha_{n}} a_{\alpha_{1}}\left\|\alpha_{1} \alpha_{2} \ldots \alpha_{n}\right\rangle \\ & =\sum_{\alpha_{2}^{\prime}, \alpha_{n}^{\prime}}\left\langle\alpha_{2}^{\prime} \alpha_{n}^{\prime}\right\| \hat{v}\left\|\alpha_{2} \alpha_{n}\right\rangle a_{\alpha_{2}^{\prime}}^{\dagger} a_{\alpha_{n}^{\prime}}^{\dagger} \alpha_{\alpha_{n}} a_{\alpha_{2}}\left\|\alpha_{1} \alpha_{2} \ldots \alpha_{n}\right\rangle \\ & =\cdots, \tag{48}\\ & =\sum_{\alpha, \beta, \gamma, \delta}\langle\alpha \beta\| \hat{v}\|\gamma \delta\rangle a_{\alpha}^{\dagger} a_{\beta}^{\dagger} a_{\delta} a_{\gamma}\left\|\alpha_{1} \alpha_{2} \ldots \alpha_{n}\right\rangle \quad \text { (48) } \end{align*}$

Operators in second quantization	
Here we let \sum^{\prime} indicate that the sums running over α and β run over all single-particle states, while the summations γ and δ run over all pairs of single-particle states. We wish to remove this restriction and since	
$\qquad$$\langle\alpha \beta\| \hat{v}\|\gamma \delta\rangle$ $=\langle\beta \alpha\| \hat{v}\|\delta \gamma\rangle$	
we get	
$\sum_{\alpha \beta}\langle\alpha \beta\| \hat{v}\|\gamma \delta\rangle a_{\alpha}^{\dagger} \alpha_{\beta}^{\dagger} a_{\delta} a_{\gamma}$ $=\sum_{\alpha \beta}\langle\beta \alpha\| \hat{v}\|\delta \gamma\rangle a_{\alpha}^{\dagger} a_{\beta}^{\dagger} a_{\delta} a_{\gamma}$ (50) $=\sum_{\alpha \beta}\langle\beta \alpha\| \hat{v}\|\delta \gamma\rangle a_{\beta}^{\dagger} a_{\alpha}^{\dagger} a_{\gamma} a_{\delta}$ (51)	

where we have used the anti-commutation rules.

Changing the summation indices α and β in (51) we obtain

$$
\sum_{\alpha \beta}\langle\alpha \beta| \hat{v}|\gamma \delta\rangle a_{\alpha}^{\dagger} a_{\beta}^{\dagger} a_{\delta} a_{\gamma}=\sum_{\alpha \beta}\langle\alpha \beta| \hat{v}|\delta \gamma\rangle a_{\alpha}^{\dagger} a_{\beta}^{\dagger} a_{\gamma} a_{\delta}
$$

From this it follows that the restriction on the summation over γ and δ can be removed if we multiply with a factor $\frac{1}{2}$, resulting in

$$
\left.\hat{H}_{l}=\frac{1}{2} \sum_{\alpha \beta \gamma \delta}\langle\alpha \beta| \hat{v}|\gamma \delta\rangle\right\rangle_{\alpha}^{\dagger} a_{\beta}^{\dagger} a_{\delta} a_{\gamma}
$$

where we sum freely over all single-particle states α, β, γ og δ

Operators in second quantization

```
Using the commutation relations we get
\[
a_{\alpha_{2}} a_{\alpha_{1}} a_{\alpha}^{\dagger} a_{\beta}^{\dagger} a_{\delta} a_{\gamma} a_{\beta_{1}}^{\dagger} a_{\beta_{2}}^{\dagger}
\]
\(=a_{\alpha_{2}} a_{\alpha_{1}} a_{\alpha}^{\dagger} a_{\beta}^{\dagger}\left(a_{\delta} \delta_{\gamma \beta_{1}} a_{\beta_{2}}^{\dagger}-a_{\delta} a_{\beta_{1}}^{\dagger} a_{\gamma} \alpha_{\beta_{2}}^{\dagger}\right)\)
\(=a_{\alpha_{2}} a_{\alpha_{1}} a_{\alpha}^{\dagger} \alpha_{\beta}^{\dagger}\left(\delta_{\gamma \beta_{1}} \delta_{\delta \beta_{2}}-\delta_{\gamma \beta_{1}} a_{\beta_{2}}^{\dagger} a_{\delta}-a_{\delta} a_{\beta_{1}}^{\dagger} \delta_{\gamma \beta_{2}}+a_{\delta} a_{\beta_{1}}^{\dagger} a_{\beta_{2}}^{\dagger} a_{\gamma}\right)\)
\(=a_{\alpha_{2}} a_{\alpha_{1}} a_{\alpha}^{\dagger} a_{\beta}^{\dagger}\left(\delta_{\gamma \beta_{1}} \delta_{\delta \beta_{2}}-\delta_{\gamma \beta_{1}} a_{\beta_{2}}^{\dagger} a_{\delta}\right.\)
\(\left.-\delta_{\delta \beta_{1}} \delta_{\gamma \beta_{2}}+\delta_{\gamma \beta_{2}} a_{\beta_{1}}^{\dagger} a_{\delta}+a_{\delta} a_{\beta_{1}}^{\dagger} a_{\beta_{2}}^{\dagger} a_{\gamma}\right)\)

With this expression we can now verify that the second quantization form of \(\hat{H}_{1}\) in Eq. (53) results in the same matrix between two anti-symmetrized two-particle states as its between two anti-symmetrized two-particle states as its
corresponding coordinate space representation. We have
\(\left\langle\alpha_{1} \alpha_{2}\right| \hat{H}_{l}\left|\beta_{1} \beta_{2}\right\rangle=\frac{1}{2} \sum_{\alpha \beta \gamma \delta}\langle\alpha \beta| \hat{v}|\gamma \delta\rangle\langle 0| a_{\alpha_{2}} a_{\alpha_{1}} a_{\alpha}^{\dagger} \alpha_{\beta}^{\dagger} a_{\delta} a_{\gamma} \gamma_{\beta_{1}}^{\dagger} a_{\beta_{2}}^{\dagger}|0\rangle\).
(54)
Operators in second quantization

The vacuum expectation value of this product of operators becomes
\(\langle 0| a_{\alpha_{2}} a_{\alpha_{1}} a_{\alpha}^{\dagger} a_{\beta}^{\dagger} a_{\delta} a_{\gamma} a_{\beta_{1}}^{\dagger} a_{\beta_{2}}^{\dagger}|0\rangle\)
\(=\left(\delta_{\gamma \beta_{1}} \delta_{\delta \beta_{2}}-\delta_{\delta \beta_{1}} \delta_{\gamma \beta_{2}}\right)\langle 0| a_{\alpha_{2}} a_{\alpha_{1}} a_{\alpha}^{\dagger} a_{\beta}^{\dagger}|0\rangle\)
\(=\left(\delta_{\gamma \beta_{1}} \delta_{\delta \beta_{2}}-\delta_{\delta \beta_{1}} \delta_{\gamma \beta_{2}}\right)\left(\delta_{\alpha \alpha_{1}} \delta_{\beta \alpha_{2}}-\delta_{\beta \alpha_{1}} \delta_{\alpha \alpha_{2}}\right)\)

\section*{Operators in second quantization}

Insertion of Eq. (56) in Eq. (54) results in
\(\begin{aligned}\left\langle\alpha_{1} \alpha_{2}\right| \hat{H}_{l}\left|\beta_{1} \beta_{2}\right\rangle= & \frac{1}{2}\left[\left\langle\alpha_{1} \alpha_{2}\right| \hat{v}\left|\beta_{1} \beta_{2}\right\rangle-\left\langle\alpha_{1} \alpha_{2}\right| \hat{v}\left|\beta_{2} \beta_{1}\right\rangle\right. \\ & \left.-\left\langle\alpha_{2} \alpha_{1}\right| \hat{v}\left|\beta_{1} \beta_{2}\right\rangle+\left\langle\alpha_{2} \alpha_{1}\right| \hat{v}\left|\beta_{2} \beta_{1}\right\rangle\right]\end{aligned}\) \(\left.-\left\langle\alpha_{2} \alpha_{1}\right| \hat{v}\left|\beta_{1} \beta_{2}\right\rangle+\left\langle\alpha_{2} \alpha_{1}\right| \hat{v}\left|\beta_{2} \beta_{1}\right\rangle\right]\)
\(\left\langle\alpha_{1} \alpha_{2}\right| \hat{v}\left|\beta_{1} \beta_{2}\right\rangle-\left\langle\alpha_{1} \alpha_{2}\right| \hat{v}\left|\beta_{2} \beta_{1}\right\rangle\) \(=\left\langle\alpha_{1} \alpha_{2}\right| \hat{v}\left|\beta_{1} \beta_{2}\right\rangle_{\mathrm{AS}}\).

Operators in second quantization

The two-body operator can also be expressed in terms of the anti-symmetrized matrix elements we discussed previously as
\[
\begin{aligned}
\hat{H}_{I} & =\frac{1}{2} \sum_{\alpha \beta \gamma \delta}\langle\alpha \beta| \hat{v}|\gamma \delta\rangle a_{\alpha}^{\dagger} a_{\beta}^{\dagger} a_{\delta} a_{\gamma} \\
& \left.=\frac{1}{4} \sum_{\alpha \beta \gamma \delta}[\langle\alpha \beta| \hat{v}|\gamma \delta\rangle-\langle\alpha \beta| \hat{v}|\delta \gamma\rangle\rangle\right] a_{\alpha}^{\dagger} a_{\beta}^{\dagger} a_{\delta} a_{\gamma} \\
& =\frac{1}{4} \sum_{\alpha \beta \gamma \delta}\langle\alpha \beta| \hat{v}|\gamma \delta\rangle_{A S} a_{\alpha}^{\dagger} a_{\beta}^{\dagger} a_{\delta} a_{\gamma}
\end{aligned}
\]

Second quantization is a useful and elegant formalism for
constructing many-body states and quantum mechanical operators. One can express and translate many physical processes into simple pictures such as Feynman diagrams. Expecation values of many-body states are also easily calculated. However, although the equations are seemingly easy to set up, from a practical point of view, that is the solution of Schroedinger's equation, there is no particular gain. The many-body equation is equally hard to solve, brings us down to earth again. Nete however that a transformation to a particular basis, for cases where the interaction obeys specific symmetries, can ease the solution of Schroedinger's equation
But there is at least one important case where second quantiza But there is at least one important case where second quantiz
comes to our rescue. It is namely easy to introduce another reference state than the pure vacuum \(|0\rangle\), where all single-particle states are active. With many particles present it is often useful to introduce another reference state than the vacuum state \(|0\rangle\). We will label this state \(|c\rangle\) ( \(c\) for core) and as we will see it can reduce

\section*{Particle-hole formalism}

\section*{Particle-hole formalism}

If we use Eq. (60) as our new reference state, we can simplify considerably the representation of this state
the creation operators \(\mathrm{a}_{\alpha,}^{\dagger}\) acting on the true vacuum \(|0\rangle\). Following Eq. (3) we have
\[
\begin{array}{rlr}
\left|\alpha_{1} \alpha_{2} \ldots \alpha_{n-1} \alpha_{n}\right\rangle & =a_{\alpha_{1}}^{\dagger} a_{\alpha_{2}}^{\dagger} \ldots a_{\alpha_{n-1}}^{\dagger} a_{\alpha_{n}}^{\dagger}|0\rangle  \tag{60}\\
\left|\alpha_{1} \alpha_{2} \ldots \alpha_{n-1} \alpha_{n} \alpha_{n+1}\right\rangle & =a_{\alpha_{1}}^{\dagger} a_{\alpha_{\alpha}}^{\dagger} \ldots a_{\alpha_{n-1}}^{\dagger} a_{\alpha_{n}}^{\dagger} a_{\alpha_{n+1}}^{\dagger}|0\rangle & \text { (61) } \\
\left|\alpha_{1} \alpha_{2} \ldots \alpha_{n-1}\right\rangle & =a_{\alpha_{1}}^{\dagger} a_{\alpha_{2}}^{\dagger} \ldots a_{\alpha_{n-1}}^{\dagger}|0\rangle & \text { (62) }
\end{array}
\]

\section*{Particle-hole formalism} The first state has one additional particle with respect to the new
vacuum state \(|c\rangle\) and is normally referred to as a one-particle state or one particle added to the many-body reference state. The second state has one particle less than the reference vacuum state c) and is referred to as a one-hole state. When dealing with a new reference state it is often convenient to introduce new creation and annihilation operators since we have from Eq. (65)
\[
a_{\alpha}|c\rangle \neq 0
\]
since \(\alpha\) is contained in \(|c\rangle\), while for the true vacuum we have \(a_{\alpha}|0\rangle=0\) for all \(\alpha\)
The new reference state leads to the definition of new creation and annihilation operators which satisfy the following relations
\(\left\{b_{\alpha}^{\dagger}, b_{\beta}^{\dagger}\right\}=\left\{b_{\alpha}, b_{\beta}\right\}=0\)
\(\left\{b_{\alpha}^{\dagger}, b_{\beta}\right\}=\delta_{\alpha}\)

\section*{Particle-hole formalism}

The physical interpretation of these new operators is that of so-called quasiparticle states. This means that a state defined the addition of one extra particle to a reference state \(|c\rangle\) may not necesseraly be interpreted as one particle coupled to a core. We define now new creation operators that act on a state \(\alpha\) creating a new quasiparticle state
\[
b_{\alpha}^{\dagger}|c\rangle= \begin{cases}a_{\alpha}^{\dagger}|c\rangle=|\alpha\rangle, & \alpha>F  \tag{70}\\ a_{\alpha}|c\rangle=\left|\alpha^{-1}\right\rangle, & \alpha \leq F\end{cases}
\]
where \(F\) is the Fermi level representing the last occupied single-particle orbit of the new reference state \(|c\rangle\). The annihilation is the hermitian conjugate of the creation operator (68)
resulting in

With the new creation and annihilation operator we can now construct many-body quasiparticle states, with
one-particle-one-hole states, two-particle-two-hole states etc in the same fashion as we previously constructed many-particle states. We can write a general particle-hole state as
\(\left|\beta_{1} \beta_{2} \ldots \beta_{n_{p}} \gamma_{1}^{-1} \gamma_{2}^{-1} \ldots \gamma_{n_{h}}^{-1}\right\rangle \equiv \underbrace{b_{\beta_{1}}^{\dagger} b_{\beta_{2}}^{\dagger} \ldots b_{\beta_{n_{p}}}^{\dagger} \underbrace{b_{1} \dagger}_{\leq F} b_{\gamma_{2}}^{\dagger} \ldots b_{\gamma_{n_{h}}}^{\dagger}}_{>F}|c\rangle\)
We can now rewrite our one-body and two-body operators in terms of the new creation and annihilation operators. The number of the new creatio
\[
\hat{N}=\sum_{\alpha} a_{\alpha}^{\dagger} a_{\alpha}=\sum_{\alpha>F} b_{\alpha}^{\dagger} b_{\alpha}+n_{c}-\sum_{\alpha \leq F} b_{\alpha}^{\dagger} b_{\alpha}
\]
where \(n_{c}\) is the number of particle in the new vacuum state \(|c\rangle\). The action of \(\hat{N}\) on a many-body state results in

We express the one-body operator \(H_{0}\) in terms of the quasi-particle creation and annihilation operators, resulting in

\[
+\sum_{\alpha \leq F}\langle\alpha| \hat{h}_{0}|\alpha\rangle-\sum_{\alpha \beta \leq F}\langle\beta| \hat{h}_{0}|\alpha\rangle b_{\alpha}^{\dagger} b_{\beta}
\]

The first term gives contribution only for particle states, while the last one contributes only for holestates. The second term can
 contribution from the vacuum state |c|.

\section*{Particle-hole formalism}

\section*{Particle-hole formalism}

The two-particle operator in the particle-hole formalism is more complicated since we have to translate four indices \(\alpha \beta \gamma \delta\) to the complicated since we have to translate four indices \(\alpha \beta \gamma \delta\) to the possible combinations of particle and hole states. When perfor
the commutator algebra we can regroup the operator in five different terms
\[
\hat{H}_{l}=\hat{H}_{l}^{(a)}+\hat{H}_{l}^{(b)}+\hat{H}_{l}^{(c)}+\hat{H}_{l}^{(d)}+\hat{H}_{l}^{(e)}
\]

Using anti-symmetrized matrix elements, bthe term \(\hat{H}_{l}^{(a)}\) is
\[
\begin{equation*}
\hat{H}_{l}^{(a)}=\frac{1}{4} \sum_{a b c d}\langle a b| \hat{V}|c d\rangle b_{a}^{\dagger} b_{b}^{\dagger} b_{d} b_{c} \tag{80}
\end{equation*}
\]

\section*{Particle-hole formalism}

The next term \(\hat{H}_{l}^{(b)}\) reads
\[
\begin{equation*}
\hat{H}_{l}^{(b)}=\frac{1}{4} \sum_{a b c i}\left(\langle a b| \hat{V}|c i\rangle b_{a}^{\dagger} b_{b}^{\dagger} b_{i}^{\dagger} b_{c}+\langle a i| \hat{V}|c b\rangle b_{a}^{\dagger} b_{i} b_{b} b_{c}\right) \tag{81}
\end{equation*}
\]

This term conserves the number of quasiparticles but creates or removes a three-particle-one-hole state. For \(\hat{H}_{l}^{(c)}\) we have
\[
\begin{aligned}
\hat{H}_{l}^{(c)}= & \frac{1}{4} \sum_{a b i j}\left(\langle a b| \hat{V}|j j\rangle b_{a}^{\dagger} b_{b}^{\dagger} b_{j}^{\dagger} b_{i}^{\dagger}+\langle i j| \hat{V}|a b\rangle b_{a} b_{b} b_{j} b_{i}\right)+ \\
& \frac{1}{2} \sum_{a b i j}\langle a i| \hat{V}|b j\rangle b_{a}^{\dagger} b_{j}^{\dagger} b_{b} b_{i}+\frac{1}{2} \sum_{a b i}\langle a i| \hat{V}|b i\rangle b_{a}^{\dagger} b_{b} . \quad \text { (82) }
\end{aligned}
\]

\section*{Particle-hole formalism}

The first line stands for the creation of a two-particle-two-hole state, while the second line represents the creation to two one-particle-one-hole pairs while the last term represents a one-particle-one-hole pairs while the last term represents a
contribution to the particle single-particle energy from the hole states, that is an interaction between the particle states and the hole states within the new vacuum state. The fourth term reads
\[
\begin{aligned}
\hat{H}_{l}^{(d)}= & \frac{1}{4} \sum_{a j k}\left(\langle a i| \hat{V}|j k\rangle b_{a}^{\dagger} b_{k}^{\dagger} b_{j}^{\dagger} b_{i}+\langle j i| \hat{V}|a k\rangle b_{k}^{\dagger} b_{j} b_{i} b_{a}\right)+ \\
& \frac{1}{4} \sum_{a i j}\left(\langle a i| \hat{V}|j i\rangle b_{a}^{\dagger} b_{j}^{\dagger}+\langle j i| \hat{V}|a i\rangle-\langle j i| \hat{V}|i a\rangle b_{j} b_{a}\right) \text { (83) }
\end{aligned}
\]

The terms in the first line stand for the creation of a particle-hole tate interacting with hole states, we will label this as a two-hole-one-particle contribution. The remaining terms are particle-hole state interacting with the holes in the vacuum state.

Finally we have
\(\Phi_{A S}\left(\alpha_{1}, \ldots, \alpha_{A} ; x_{1}, \ldots x_{A}\right)=\frac{1}{\sqrt{A}} \sum_{\rho}(-1)^{P} \rho \prod_{i=1}^{A} \psi_{\alpha_{i}}\left(x_{i}\right)\),
which is equivalent with \(\left|\alpha_{1} \ldots \alpha_{A}\right\rangle=a_{\alpha_{1}}^{\dagger} \ldots a_{\alpha_{A}}^{\dagger}|0\rangle\). We have also
\[
a_{p}^{\dagger}|0\rangle=|p\rangle, \quad a_{p}|q\rangle=\delta_{p q}|0\rangle
\]
\[
\delta_{p q}=\left\{a_{p}, a_{q}^{\dagger}\right\},
\]
and
\(0=\left\{a_{p}^{\dagger}, a_{q}\right\}=\left\{a_{p}, a_{q}\right\}=\left\{a_{p}^{\dagger}, a_{q}^{\dagger}\right\}\)
\(\left|\Phi_{0}\right\rangle=\left|\alpha_{1} \ldots \alpha_{A}\right\rangle, \quad \alpha_{1}, \ldots, \alpha_{A} \leq \alpha_{F}\)

Summarizing and defining a normal-ordered Hamiltonian

We can also define a three-body operator
\[
\hat{V}_{3}=\frac{1}{36} \sum_{p q r s t u}\langle p q r| \hat{v}_{3}|s t u\rangle_{A S} a_{p}^{\dagger} a_{q}^{\dagger} a_{r}^{\dagger} a_{u} a_{t} a_{s}
\]
with the antisymmetrized matrix element
\(\langle p q r| \hat{v}_{3}|s t u\rangle_{A S}=\langle p q r| \hat{v}_{3}|s t u\rangle+\langle p q r| \hat{v}_{3}|t u s\rangle+\langle p q r| \hat{v}_{3}|u s t\rangle-\langle p q r| \hat{v}_{3}\)
(85)
where we have defined the antisymmetric matrix elements
\(\langle p| \hat{v}|r s\rangle_{A S}=\langle p q| \hat{v}|r s\rangle-\langle p q| \hat{v}|s r\rangle\).


\section*{Hartree-Fock in second quantization and Thouless' theorem}

Let us give a simple proof of Thouless' theorem. The theorem states that we can make a linear combination av particle-hole excitations with respect to a given reference state \(|c\rangle\). With this linear combination, we can make a new Slater determinant \(\left|c^{\prime}\right\rangle\) which is not orthogonal to \(|c\rangle\), that is
\[
\left\langle c \mid c^{\prime}\right\rangle \neq 0 .
\]

To show this we need some intermediate steps. The exponential product of two operators \(\exp \hat{A} \times \exp \hat{B}\) is equal to \(\exp (\hat{A}+\hat{B})\) only if the two operators commute, that is

We note that
\[
\prod_{i} \sum_{a>F} C_{a i} a_{a}^{\dagger} a_{i} \sum_{b>F} C_{b i} a_{b}^{\dagger} a_{i}|c\rangle=0,
\]

Baker-Campbell-Hauersdorf. This relation states that
\[
\exp \hat{C}=\exp \hat{A} \exp \hat{B},
\]
with
\[
\hat{C}=\hat{A}+\hat{B}+\frac{1}{2}[\hat{A}, \hat{B}]+\frac{1}{12}[[\hat{A}, \hat{B}], \hat{B}]-\frac{1}{12}[[\hat{A}, \hat{B}], \hat{A}]+. .
\]

From these relations, we note that in our expression for \(\left|c^{\prime}\right\rangle\) we have commutators of the type
\[
\left[a_{a}^{\dagger} a_{i}, a_{b}^{\dagger} a_{j}\right],
\]
and it is easy to convince oneself that these commutators, or higher powers thereof, are all zero. This means that we can write out our new representation of a Slater determinant as
\[
\text { frer }+1, r
\]

I \(\qquad\)
\(\qquad\)
and all higher-order powers of these combinations of creation and annihilation operators disappear due to the fact that \(\left(a_{i}\right)^{n}|c\rangle=0\) when \(n>1\). This allows us to rewrite the expression for \(\left|c^{\prime}\right\rangle\) as
\[
\left|c^{\prime}\right\rangle=\prod_{i}\left\{1+\sum_{a>F} C_{a i} i_{a}^{\dagger} a_{i}\right\}|c\rangle,
\]
which we can rewrite
\[
\left.\left|c^{\prime}\right\rangle=\prod_{i}\left\{1+\sum_{a>F} c_{a i} a_{a}^{\dagger} a_{i}\right\}\left|a_{i_{1}}^{\dagger} a_{i 2}^{\dagger} \cdots a_{i_{n}}^{\dagger}\right| 0\right\rangle .
\]

The last equation can be written as

\section*{New operators}

If we define a new creation operator
\[
b_{i}^{\dagger}=a_{i}^{\dagger}+\sum_{a>F} C_{a i} a_{a}^{\dagger},
\]
we have
\[
\left|c^{\prime}\right\rangle=\prod_{i} b_{i}^{t}|0\rangle=\prod_{i}\left(a_{i}+\sum_{\mathrm{a} \geqslant \gamma} c_{a} a_{0}{ }^{t}\right)|0\rangle,
\]
meaning that the new representation of the Slater determinant in second quantization, \(\left|c^{\prime}\right\rangle\), looks like our previous ones. However, this representation is not general enough since we have a restriction on the sum over single-particle states in Eq. (88). The
single-particle states have all to be above the Fermi level. The question then is whether we can construct a general representation of a Slater determinant with a creation operato
\(\tilde{b}_{i}^{\dagger}=\sum f_{i p} a_{p}^{\dagger}\), \(\qquad\)

\section*{Showing that \(|\tilde{c}\rangle=\left|c^{\prime}\right\rangle\)}

We need to show that \(|\tilde{c}\rangle=\left|c^{\prime}\right\rangle\). We need also to assume that the new state is
follows that
\(\langle c \mid \tilde{c}\rangle=\langle 0| a_{i_{n}} \ldots a_{i_{1}}\left(\sum_{p=i_{1}}^{i_{n}} f_{i_{1} p a_{p}^{\dagger}}\right)\left(\sum_{q=i_{1}}^{i_{n}} f_{i 2 q} a_{q}^{\dagger}\right) \ldots\left(\sum_{t=i_{1}}^{i_{n}} f_{i_{n}} t_{t}^{\dagger}\right) \mid 0\)
which is nothing but the determinant \(\operatorname{det}\left(f_{i p}\right)\) which we can, using the intermediate normalization condition, normalize to one, that is
\(\operatorname{det}\left(f_{i p}\right)=1\),
meaning that \(f\) has an inverse defined as (since we are dealing with orthogonal, and in our case unitary as well, transformations)
\[
\sum_{k} f_{i k} f_{k j}^{-1}=\delta_{i j},
\]
and

\section*{Thouless' theorem}

This means that we can actually write an ansatz for the ground state of the system as a linear combination of terms which conta the ansatz itself \(|c\rangle\) with an admixture from an infinity of
one-particle-one-hole states. The latter has important consequences when we wish to interpret the Hartree-Fock equations and their stability. We can rewrite the new representation as
\[
\left|c^{\prime}\right\rangle=|c\rangle+|\delta c\rangle,
\]
where \(|\delta c\rangle\) can now be interpreted as a small variation. If we approximate this term with contributions from one-particle-one-hole ( \(1 p-1 h\) ) states only, we arrive at
\[
\left|c^{\prime}\right\rangle=\left(1+\sum_{a i} \delta C_{a i} a_{\mathrm{a}}^{\dagger} a_{i}\right)|c\rangle .
\]

In our derivation of the Hartree-Fock equations we have shown that

\section*{Hartree-Fock in second quantization and stability of HF}
solution
Hartree-Fock in second quantization and stability of HF

The variational condition for deriving the Hartree-Fock equations
guarantees only that the expectation value \(\langle c| \hat{H}|c\rangle\) has an extreme value, not necessarily a minimum. To figure out whether the extreme value we have found is a minimum, we can use second quantization to analyze our results and find a criterion for the above expectation value to a local minimum. We will use Thouless' theorem and show that
\[
\frac{\left\langle c^{\prime}\right| \hat{H}\left|c^{\prime}\right\rangle}{\left\langle c^{\prime} \mid c^{\prime}\right\rangle} \geq\langle c| \hat{A}|c\rangle=E_{0}
\]
with
\(\left|c^{\prime}\right\rangle=|c\rangle+|\delta c\rangle\).
Using Thouless' theorem we can write out \(\left|c^{\prime}\right\rangle\) as
\(\left|c^{\prime}\right\rangle=\exp \left\{\sum \sum \delta C_{a i} a_{\mathrm{a}}^{\dagger} a_{i}\right\}|c\rangle\)
The norm of \(\mid c\) ') is given by (using the intermediate normalization condition \(\left\langle c^{\prime} \mid c\right\rangle=1\) )
\[
\left\langle c^{\prime} \mid c^{\prime}\right\rangle=1+\sum_{a>F} \sum_{i \leq F}\left|\delta C_{a i}\right|^{2}+O\left(\delta C_{a i}^{3}\right) .
\]

The expectation value for the energy is now given by (using the Hartree-Fock condition)
\[
\left\langle c^{\prime}\right| \hat{H}\left|c^{\prime}\right\rangle=\langle c| \hat{H}|c\rangle+\sum_{a b>F} \sum_{i j \leq F} \delta C_{a i}^{*} \delta C_{b j}\langle c| a_{i}^{\dagger} a_{a} \hat{H}_{b}^{a} a_{j}^{\dagger}|c\rangle+
\]
\[
\left.\frac{1}{2!} \sum_{a b>F} \sum_{i j \leq F} \delta C_{a i} \delta C_{b j}\langle c| \hat{H} a_{a}^{\dagger} a_{i} a_{b}^{\dagger} a_{j}|c\rangle+\frac{1}{2!} \sum_{a b>F} \sum_{i j \leq F} \delta C_{a i}^{*} \delta C_{b j}^{*}\langle c| a_{j}^{\dagger} a_{b} a \right\rvert\, a_{i}
\]

\section*{Hartree-Fock in second quantization and stability of HF}
solution
We have already calculated the second term on the right-hand sid of the previous equation
\(\langle c|\left(\left\{a_{i}^{\dagger} a_{a}\right\} \hat{H}\left\{a_{b}^{\dagger} a_{j}\right\}\right)|c\rangle=\sum_{p q} \sum_{i j a b} \delta C_{a i}^{*} \delta C_{b j}\langle p| \hat{h}_{0}|q\rangle\langle c|\left(\left\{a_{i}^{\dagger} a_{a}\right\}\{\right.\)
(91)
\(+\frac{1}{4} \sum_{p q r s} \sum_{i j a b} \delta C_{a i}^{*} \delta C_{b j}\langle p q| \hat{v}|r s\rangle\langle c|\left(\left\{a_{i}^{\dagger} a_{a}\right\}\left\{{ }_{a}^{p} a_{p}^{\dagger}\right.\right.\)
(92)
resulting in
\[
E_{0} \sum_{a i}\left|\delta C_{a i}\right|^{2}+\sum_{a i}\left|\delta C_{a i}\right|^{2}\left(\varepsilon_{a}-\varepsilon_{i}\right)-\sum_{i j a b}\langle a j| \hat{v}|b i\rangle \delta C_{a i}^{*} \delta C_{b j} .
\]

\section*{Hartree-Fock in second quantization and stability of HF}

\section*{solution}
\(\frac{1}{2!}\langle c|\left(\left\{a_{j}^{\dagger} a_{b}\right\}\left\{a_{i}^{\dagger} a_{a}\right\} \hat{V}_{N}\right)|c\rangle=\frac{1}{2!}\langle c|\left(\hat{V}_{N}\left\{a_{a}^{\dagger} a_{i}\right\}\left\{a_{b}^{\dagger} a_{j}\right\}\right)^{\dagger}|c\rangle\)
which is nothing but
\[
\frac{1}{2!}\langle c|\left(\hat{V}_{N}\left\{a_{a}^{\dagger} a_{i}\right\}\left\{a_{b}^{\dagger} a j\right\}\right)|c\rangle^{*}=\frac{1}{2} \sum_{i j a b}(\langle i j| \hat{\hat{y}}|a b\rangle)^{*} \delta C_{a i}^{*} \delta C_{b j}^{*}
\]
or
\[
\frac{1}{2} \sum_{i j a b}(\langle a b| \hat{v}|i j\rangle) \delta C_{a i}^{*} \delta C_{b j}^{*}
\]
where we have used the relation
\(\langle a| \hat{A}|b\rangle=\left(\langle b| \hat{A}^{\dagger}|a\rangle\right)^{*}\)
due to the hermiticity of \(\hat{H}\) and \(\hat{V}\)
Hartree-Fock in second quantization and stability of HF
solution
We define two matrix elements
\[
A_{a i, b j}=-\langle a j| \hat{|\hat{b i}\rangle}
\]
and \(\quad B_{a i, b j}=\langle a b| \hat{v}|\dot{j}\rangle\)
both being anti-symmetrized.

\section*{Hartree-Fock in second quantization and stability of HF}
solution
With these definitions we write out the energy
\[
\begin{gather*}
\left\langle c^{\prime}\right| H\left|c^{\prime}\right\rangle=\left(1+\sum_{a i}\left|\delta C_{a i}\right|^{2}\right)\langle c| H|c\rangle+\sum_{a i}\left|\delta C_{a i}\right|^{2}\left(\varepsilon_{a}^{H F}-\varepsilon_{i}^{H F}\right)+ \\
\frac{1}{2} \sum_{i j a b} B_{a i, b j}^{*} \delta C_{a i} \delta C_{b j}+\frac{1}{2} \sum_{i j a b} B_{a i, b j} \delta C_{a i}^{*} \delta C_{b j}^{*}+O\left(\delta C_{a i}^{3}\right), \tag{94}
\end{gather*}
\]
which can be rewritten as
\[
\left\langle c^{\prime}\right| H\left|c^{\prime}\right\rangle=\left(1+\sum_{a i}\left|\delta C_{a i}\right|^{2}\right)\langle c| H|c\rangle+\Delta E+O\left(\delta C_{a i}^{3}\right),
\]
and skipping higher-order terms we arrived

\section*{Hartree-Fock in second quantization and stability of HF}
solution
\begin{tabular}{lc} 
We have defined & \(\Delta E=\frac{1}{2}\langle\chi| \hat{M}|\chi\rangle\) \\
with the vectors & \(\chi=\left[\begin{array}{ll}\delta C & \delta C^{*}\end{array}\right]^{T}\) \\
and the matrix & \\
& \(\hat{M}=\left(\begin{array}{cc}\Delta+A & B \\
B^{*} & \Delta+A^{*}\end{array}\right)\),
\end{tabular}
with \(\Delta_{a i, b j}=\left(\varepsilon_{a}-\varepsilon_{i}\right) \delta_{a b} \delta_{i j}\)

\section*{Operators in second quantization}

In the build-up of a shell-model or FCl code that is meant to tackle large dimensionalities is the action of the Hamiltonian \(\hat{H}\) on a Slater determinant represented in second quantization as
\[
\left|\alpha_{1} \ldots \alpha_{n}\right\rangle=a_{\alpha_{1}}^{\dagger} a_{\alpha_{2}}^{\dagger} \ldots a_{\alpha_{n}}^{\dagger}|0\rangle .
\]

The time consuming part stems from the action of the Hamiltonian on the above determinant,
\(\left(\sum_{\alpha \beta}\langle\alpha| t+u|\beta\rangle a_{\alpha}^{\dagger} a_{\beta}+\frac{1}{4} \sum_{\alpha \beta \gamma \delta}\langle\alpha \beta| \hat{v}|\gamma \delta\rangle a_{\alpha}^{\dagger} a_{\beta}^{\dagger} a_{\delta} a_{\gamma}\right) a_{\alpha_{1}}^{\dagger} \alpha_{\alpha_{2}}^{\dagger} \ldots a_{\alpha_{n}}^{\dagger}|\varphi|\)
A practically useful way to implement this action is to encode a
Slater determinant as a bit pattern.

Hartree-Fock in second quantization and stability of HF

\section*{solution}

The condition
\[
\Delta E=\frac{1}{2}\langle\chi| \hat{M}|\chi\rangle \geq 0
\]
for an arbitrary vector
\[
\chi=\left[\begin{array}{ll}
\delta C & \delta C^{*}
\end{array}\right]^{T}
\]
means that all eigenvalues of the matrix have to be larger than or equal zero. A necessary (but no sufficient) condition is that the matrix elements (for all ai )
\[
\left(\varepsilon_{a}-\varepsilon_{i}\right) \delta_{a b} \delta_{i j}+A_{a i, b j} \geq 0
\]

This equation can be used as a first test of the stability of the Hartree-Fock equation

\section*{Operators in second quantization}

Assume that we have at our disposal \(n\) different single-particle orbits \(\alpha_{0}, \alpha_{2}, \ldots, \alpha_{n-1}\) and that we can distribute among these orbits \(N \leq n\) particles.
A Slater determinant can then be coded as an integer of \(n\) bits. As an example, if we have \(n=16\) single-particle states \(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{15}\) and \(N=4\) fermions occupying the states \(\alpha_{3}, \alpha_{6}, \alpha_{10}\) and \(\alpha_{13}\) we could write this Slater determinant as
\[
\Phi_{\Lambda}=a_{\alpha_{3}}^{\dagger}{ }_{\alpha_{6}}^{\dagger}{ }_{\alpha_{\alpha_{10}}^{\dagger}}^{\dagger} a_{\alpha_{13}}^{\dagger}|0\rangle .
\]

The unoccupied single-particle states have bit value 0 while the occupied ones are represented by bit state 1 . In the binary notation we would write this 16 bits long integer as
\(\begin{array}{ccccccccccccc}\alpha_{0} & \alpha_{1} & \alpha_{2} & \alpha_{3} & \alpha_{4} & \alpha_{5} & \alpha_{6} & \alpha_{7} & \alpha_{8} & \alpha_{9} & \alpha_{10} & \alpha_{11} & \alpha_{12} \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0\end{array}\)
which translates into the decimal number

\section*{Operators in second quantization}

We assume again that we have at our disposal \(n\) different
single-particle orbits \(\alpha_{0}, \alpha_{2}, \ldots, \alpha_{n-1}\) and that we can distribute single-particle orbits \(\alpha_{0}, \alpha_{2}, \ldots, \alpha_{n-1}\) and that we can distribute
among these orbits \(N \leq n\) particles. The ordering among these among these orbits \(N \leq n\) particles. The ordering among these
states is important as it defines the order of the creation operators. We will write the determinant
\[
\Phi_{\Lambda}=a_{\alpha_{3}}^{\dagger} a_{\alpha_{6}}^{\dagger} a_{\alpha_{10}}^{\dagger} a_{\alpha_{13}}^{\dagger}|0\rangle,
\]
in a more compact way as
\(\Phi_{3,6,10,13}=|0001001000100100\rangle\).
The action of a creation operator is thus
\(a_{\alpha_{4}}^{\dagger} \Phi_{3,6,10,13}=a_{\alpha_{4}}^{\dagger}|0001001000100100\rangle=a_{\alpha_{4}}^{\dagger} a_{\alpha_{3}}^{\dagger} a_{\alpha_{6}}^{\dagger} a_{\alpha_{10}}^{\dagger} a_{\alpha_{13}}^{\dagger}|0\rangle\),
which becomes
\(-a_{\alpha 3}^{\dagger} a_{\alpha 4}^{\dagger} a_{\alpha 6}^{\dagger} a_{\alpha 10}^{\dagger} a_{\alpha_{13}}^{\dagger}|0\rangle=-|0001101000100100\rangle\).

\section*{Similarly}
\(a_{\alpha_{6}}^{\dagger} \Phi_{3,6,10,13}=a_{\alpha_{6}}^{\dagger}|0001001000100100\rangle=a_{\alpha_{6}}^{\dagger} a_{\alpha_{3}}^{\dagger} a_{\alpha_{6}}^{\dagger} a_{\alpha_{10}}^{\dagger} a_{\alpha_{13}}^{\dagger}|0\rangle\),
which becomes
\[
-a_{\alpha 4}^{\dagger}\left(a_{\alpha_{6}}^{\dagger}\right)^{2} a_{\alpha_{10}}^{\dagger} a_{\alpha_{13}}^{\dagger}|0\rangle=0!
\]

This gives a simple recipe:
If one of the bits \(b_{j}\) is 1 and we act with a creation operator on this bit, we return a null vector
- If \(b_{j}=0\), we set it to 1 and return a sign factor \((-1)^{\prime}\), where is the number of bits set before bit

\section*{Operators in second quantization}

\section*{Operators in second quantization}

\section*{The action}
\(a_{\alpha 0} \Phi_{0,3,6,10,13}=|0001001000100100\rangle\),
can be obtained by subtracting the logical sum (AND operation) of \(\phi_{0,3,6,10,13}\) and a word which represents only \(\alpha_{0}\), that is

\section*{|1000000000000000>,}
from \(\Phi_{0,3,6,10,13}=\mid 1001001000100100\)
This operation gives \(|0001001000100100\rangle\)
Similarly, we can form \(a_{\alpha_{4}}^{\dagger} a_{\alpha_{0}} \Phi_{0,3,6,10,13}\), say, by adding \(|0000100000000000\rangle\) to \(a_{\alpha_{0}} \Phi_{0,3,6,10,13}\), first checking that their logical sum is zero in order to make sure that orbital \(\alpha_{4}\) is not already occupied.

\section*{Operators in second quantization}

It is trickier however to get the phase \((-1)^{\prime}\). One possibility is as follows
- Let \(S_{1}\) be a word that represents the 1 -bit to be removed and all others set to zero.
In the previous example \(S_{1}=|1000000000000000\rangle\)
- Define \(S_{2}\) as the similar word that represents the bit to be dded, that is in our case
\(S_{2}=|0000100000000000\rangle\)
- Compute then \(S=S_{1}-S_{2}\), which here becomes \(S=|0111000000000000\rangle\)
- Perform then the logical AND operation of \(S\) with the word containing
\(\Phi_{0,3,6,10,13}=|1001001000100100\rangle\),
which results in \(|0001000000000000\rangle\). Counting the number of

\section*{Exercises}

\section*{Exercise 1}

This exercise serves to convince you about the relation between two different single-particle bases, where one could be our new Hartree-Fock basis and the other a harmonic oscillator basis. Consider a Slater determinant built up of single-particle orbitals \(\psi_{\lambda}\) with \(\lambda=1,2, \ldots, A\). The unitary transformation
\[
\psi_{a}=\sum_{\lambda} C_{a \lambda} \phi_{\lambda},
\]
brings us into the new basis. The new basis has quantum numbers \(a=1,2, \ldots, A\). Show that the new basis is orthonormal. Show that the new Slater determinant constructed from the new single-particle wave functions can be written as the determinant based on the previous basis and the determinant of the matrix \(C\). Show that the old and the new Slater determinants are equal up to a complex constant with absolute value unity. (Hint, \(C\) is a unitary matrix). Starting with


\section*{Exercise 3}

Show that the onebody part of the Hamiltonian
\[
\hat{H}_{0}=\sum_{p q}\langle p| \hat{h}_{0}|q\rangle q_{p}^{\dagger} a_{q},
\]
can be written, using standard annihilation and creation operators, in normal-ordered form as
\[
\hat{H}_{0}=\sum_{p q}\langle p| \hat{h}_{0}|q\rangle\left\{a_{p}^{\dagger} a_{q}\right\}+\sum_{i}\langle i| \hat{h}_{0}|i\rangle .
\]

Explain the meaning of the various symbols. Which reference vacuum has been used?

\section*{Exercises}

Exercise 4
Show that the twobody part of the Hamiltonian
\[
\hat{H}_{I}=\frac{1}{4} \sum\langle p q| \hat{v}|r s\rangle a_{\rho}^{\dagger} a_{q}^{\dagger} a_{s} a_{r},
\]

\section*{Exercises}

\section*{Exercise 5}

The aim of this exercise is to set up specific matrix elements that
will turn useful when we start our discussions of the nuclear shel
model. In particular you will notice, depending on the character of
the operator, that many matrix elements will actually be zero
Consider three \(N\)-particle Slater determinants \(\left.\left|\Phi_{0},\right| \Phi_{i}^{a}\right\rangle\) and \(\left|\Phi_{i j}^{a b}\right\rangle\),,
where the notation means that Slater determinant \(\left|\Phi_{i}^{j}\right\rangle\) differs from
\(\left|\Phi_{0}\right\rangle\) by one single-particle state, that is a single-particle state \(\psi_{i}\) is replaced by a single-particle state \(\psi_{a}\). It is often interpreted as -called one- \(\left|{ }^{\text {ab }}{ }^{\text {b }}\right\rangle\) ) differs by and is normally thought of as a wo-prticle wo hole excitation
We assume also that \(\left\langle\Phi_{0}\right\rangle\) represents our new vacuum reference We assume also that \(\left|\phi_{0}\right\rangle\) represents our new vacuum reference
state and the labels \(i j k .\). represent single-particle states below the state and the labels ijk... represent single-particle states below
Fermi level and \(a b c \ldots\) represent states above the Fermi level, so-called particle states. We define thereafter a general onebody normal-ordered (with respect to the new vacuum state) operator as
\[
\hat{H}_{3}=\frac{1}{36} \sum_{\substack{p q r \\ s t u}}\langle p q r| \hat{v}_{3}|s t u\rangle a_{p}^{\dagger} a_{q}^{\dagger} a_{r}^{\dagger} a_{u} a_{t} a_{s},
\]
can be written, using standard annihilation and creation operators,


Exercises: Using sympy to compute matrix elements

Exercise 7
Compute the matrix element
\[
\left\langle\alpha_{1} \alpha_{2} \alpha_{3}\right| \hat{G}\left|\alpha_{1}^{\prime} \alpha_{2}^{\prime} \alpha_{3}^{\prime}\right\rangle,
\]
using Wick's theorem and express the two-body operator \(G\) in the occupation number (second quantization) representation.

The last exercise can be solved using the symbolic Python package called SymPy. SymPy is a Python package for general purpose symbolic algebra. There is a physics module with several interesting submodules. Among these, the submodule called secondquant, contains several functionalities that allow us to test our algebraic manipulations using Wick's theorem and operators for second quantization
from sympy import
from sympy pher
econdquant import

\({ }_{\text {print simplify }}(\) picks \((\mathrm{Fd}(\mathrm{i}) * \mathrm{~F}(\mathrm{a}) * \mathrm{Fd}(\mathrm{p}) * \mathrm{~F}(\mathrm{q}) * \mathrm{Fd}(\mathrm{b}) * \mathrm{~F}(\mathrm{j})\), keep_only_full
The code defines single-particle states above and below the Fermi level, in addition to the genereal symbols \(p q\) which can refer to any type of state below or above the Fermi level. Wick's theorem is and \(F\) resp between the creation and annihilation operator together several Kronecker- \(\delta\) functions.

\section*{Exercises: Using sympy to compute matrix elements}

We can expand the above Python code by defining one-body and two-body operators using the following SymPy code
\# This code sets up a two-body Hamiltonian for fermions
from sympy import symbols, latex, WildFunction, collect,
from sympy import symbols, latex, WildFunction, collect, Rational
from sympy. physics.secondquant import \(F\), Fd , wicks, AntiSymmetric
\# setup hamiltonian




Here we have used the AntiSymmetricTensor functionality, together with normal-ordering defined by the NO function. Using the latex option, this program produces the following output
\(f_{q}^{p}\left\{a_{p}^{\dagger} a_{q}\right\}-\frac{1}{4} v_{s r}^{q p}\left\{a_{p}^{\dagger} a_{q}^{\dagger} a_{r} a_{s}\right\}\)

\section*{Exercises: Using sympy to compute matrix elements}

We can now use this code to compute the matrix elements between two two-body Slater determinants using Wick's theorem.
from sympy import symbols, latex,
from syldFunction, collect, Rational, sin \(\underset{\text { from sympy. physics.se }}{\text { \# }}\)

\(\mathrm{pr}=\mathrm{NO}(\mathrm{FR}(\mathrm{p}) * \mathrm{~F}(\mathrm{q})))\)
\(\mathrm{V}=\mathrm{Ant}\)
V


expression \(=\) wicks \((\mathrm{F}(\mathrm{b}) * \mathrm{~F}(\mathrm{a}) *\) Hamiltoni \(\operatorname{an} * \mathrm{Fd}(\mathrm{c}) * \mathrm{Fd}(\mathrm{d})\),keep_only_ful1y_ expression \(=\) evaluate_deltas (expression)
expression \(=\) simplify
expression = simplify(expression)
print "Hamiltonian def ined as:", latex (expression)
The result is as expected,
\(\delta_{a c} f_{d}^{b}-\delta_{a d} f_{c}^{b}-\delta_{b c} f_{d}^{a}+\delta_{b d} f_{c}^{a}+v_{c d}^{a b}\).

\section*{Exercises: Using sympy to compute matrix elements}

We can continue along these lines and define a normal-ordered Hamiltonian with respect to a given reference state. In our first step we just define the Hamiltonian
from sympy import symbo1s, latex, WildFunction, collect, Rational, sin
f from sympy. physics s. secondquant import \(F\), Fd, wicks, AntiSymmetricTens
\({ }^{\text {\# }} \mathrm{p}, \mathrm{q}, \mathrm{r}\) up s hamiltonian

\(\mathrm{pr}=\mathrm{Fd}(\mathrm{p}) * \mathrm{~F}(\mathrm{q})\)
\(\mathrm{V}=\mathrm{An}\)


Hamiltonian \(=\) f**r + Rational(1)/Rational (4) ****psr
\#diefine indices for states above and below the Fermi leve
index \(r\) rule
\#def ine indices
index-rule
, belo
,

'general': 'pqrs
Hnormal = substitute_dummies(Hamiltonian, new_indices=True, pretty_-ind
print "Hamiltonian def ined as:", latex (Hnormal) which results in
\[
f_{p}^{q} a_{q}^{\dagger} a_{p}+\frac{1}{4} v_{q p}^{s r} a_{s}^{\dagger} a_{r}^{\dagger} a_{p} a_{q}
\]

\section*{Exercises: Using sympy to compute matrix elements}

We can now go back to exercise 7 and define the Hamiltonian and the second-quantized representation of a three-body Slater determinant.
from sympy import symbols, latex, wildfunction, collect, Rational, sin
from sympy. physics.secondquant import \(F\), Fd, wicks, AntiSymmetricTens \# set tup hamiltonian
\(\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}=\) symbols ('p \(q\) r \(\mathrm{s}^{\prime}\),dummy \(\mathrm{drue)}\)


Hamiltonian-Rational(1)/Rational (4)*v*pqs
\(a, b, c, d, e, f=\operatorname{symbols}(\mathcal{A}, b, c, d, e, f\), ,above_fermi=True)
 expression \(=\) evaluate deltas (expression
expression \(=\) simplify (expression)
expression \(=\) simplify (exp
print latex (expression)
resulting in nine terms (as expected),
\(-\delta_{a d} v_{e f}^{c b}-\delta_{a e} v_{f d}^{c b}+\delta_{a f} v_{e d}^{c b}-\delta_{b d} v_{e f}^{a c}-\delta_{b e} v_{f d}^{a c}+\delta_{b f} v_{e d}^{a c}+\delta_{c d} v_{e f}^{a b}+\delta_{c e} v_{f d}^{a b}\)

Exercise 9
Consider the ground state \(|\Phi\rangle\) of a bound many-particle system of fermions. Assume that we remove one particle from the
single-particle state \(\lambda\) and that our system ends in a new state
\(\left|\Phi_{n}\right\rangle\). Define the energy needed to remove this particle as
\[
\left.E_{\lambda}=\sum_{n}\left|\left\langle\Phi_{n}\right| a_{\lambda}\right| \Phi\right\rangle\left.\right|^{2}\left(E_{0}-E_{n}\right),
\]
where \(E_{0}\) and \(E_{n}\) are the ground state energies of the states \(|\Phi\rangle\) and \(\left|\Phi_{n}\right\rangle\), respectively.
- Show that
\[
E_{\lambda}=\langle\Phi| a_{\lambda}^{\dagger}\left[a_{\lambda}, H\right]|\Phi\rangle,
\]
where \(H\) is the Hamiltonian of this system.
- If we assume that \(\Phi\) is the Hartree-Fock result, find the relation between \(E_{\lambda}\) and the single-particle energy \(\varepsilon_{\lambda}\) for states \(\lambda \leq F\) and \(\lambda>F\), with```

