
Project 1, deadline November 24

Nuclear Forces PHY989

National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, USA

Fall semester 2017

Nucleon-nucleon scattering
The aim of this project is to solve the Lippman-Schwinger equation for two
interacting nucleons and relate the obtained phase shifts with those extracted
from the experimental cross sections.

We are going to solve the Schroedinger equation (SE) for the neutron-proton
system in momentum space for positive energies E in order to obtain the phase
shifts. We can rewrite the SE in momentum space as

k2

m
ψl(k) + 2

π

∫ ∞
0

dqq2Vl(k, q)ψl(q) = Eψl(k). (1)

The derivation is covered by the lecture notes on scattering theory. This
derivation is discussed during the regular lectures.

Here we have used units ~ = c = 1. This means that k has dimension energy.
k is the relative momentum between the two particles. A partial wave expansion
has been used in order to reduce the problem to an integral over the magnitude
of momentum only. The subscript l refers therefore to a partial wave with a
given orbital momentum l. Below we will let the interaction to couple different
values of l. This leads to what is called a coupled-channel problem. For details,
see again the lecture notes on scattering theory.

To obtain the potential in momentum space we used the Fourier-Bessel
transform (Hankel transform)

Vl(k, k′) =
∫
jl(kr)V (r)jl(k′r)r2dr, (2)

where jl is the spherical Bessel function. We will just study the case l = 0, which
means that j0(kr) = sin(kr)/kr.

For scattering states, E > 0, the corresponding equation to solve is the
so-called Lippman-Schwinger equation. This is an integral equation where we
have to deal with the amplitude R(k, k′) (reaction matrix) defined through the
integral equation

c© 1999-2017, Nuclear Forces PHY989. Released under CC Attribution-NonCommercial 4.0
license

https://manybodyphysics.github.io/NuclearForces/doc/pub/scatteringtheory/html/scatteringtheory-reveal.html
https://manybodyphysics.github.io/NuclearForces/doc/pub/scatteringtheory/html/scatteringtheory-reveal.html

Rl(k, k′) = Vl(k, k′) + 2
π
P̂

∫ ∞
0

dqq2Vl(k, q)
1

E − q2/m
Rl(q, k′), (3)

where the total kinetic energy of the two incoming particles in the center-of-mass
system is

E = k2
0
m
. (4)

The symbol P̂ indicates that Cauchy’s principal-value prescription is used in
order to avoid the singularity arising from the zero of the denominator. We will
discuss below how to solve this problem. Eq. (3) represents then the problem
you will have to solve numerically.

The matrix Rl(k, k′) relates to the the phase shifts through its diagonal
elements as

Rl(k0, k0) = − tanδl
mk0

. (5)

From now on we will drop the subscript l in all equations.
In order to solve the Lippman-Schwinger equation in momentum space, we

need first to write a function which sets up the mesh points. We need to do that
since we are going to approximate an integral through∫ b

a

f(x)dx ≈
N∑
i=1

wif(xi),

where we have fixed N lattice points through the corresponding weights wi and
points xi.

Project 1a): Setting up the integration domain, mesh points and
weights. Start writing your main program by setting up the mesh points
and the corresponding weights. Fix first the number of mesh points N . Use
either the Fortran or C++ programs which allow you to set up integration
weights and points using Gaussian quadrature, that is get the weights ωi and
the points ki. Before you go on you need to keep in mind that if you use
Legendre polynomials (the function GaussLegendreQuadrature), the Legendre
polynomials are defined in the interval x ∈ [−1, 1]. Your integral is for the
interval r ∈ [0,∞). You will need to map the weights from the function
GaussLegendreQuadrature (C++ version) to your interval. To do this, call first
GaussLegendreQuadrature(a,b,x[],w[],N) (similar links for the Fortran version),
with a = −1, b = 1. It returns the mesh points xi and weights wi. You map
these points over to the limits in your integral. You can then use the following
mapping

ki = const× tan
{π

4 (1 + xi)
}
,

and

2

https://github.com/ManyBodyPhysics/NuclearForces/tree/master/doc/Programs/ScatteringTheory
http://compphysics.github.io/ComputationalPhysics/doc/pub/integrate/html/integrate-reveal.html
https://github.com/ManyBodyPhysics/NuclearForces/blob/master/doc/Programs/ScatteringTheory/Cpp/IntegrationExample/integrationexample.cpp

ωi = const
π

4
wi

cos2
(
π
4 (1 + xi)

) .
If you opt for units fm−1 for k, set const = 1. If you opt to work with MeV, set
const ∼ 200 (~c = 197 MeVfm). You must decide which units to use.

Project 1b): Adding a potential model. The next step is to write a
function which calculates the potential in momentum space. The potential we
will use here is a parametrized potential between a proton and neutron for
the partial wave 1S0, i.e., spin S = 0 and orbital momentum l = 0, a singlet
S-state. This state does not have a bound state for the deuteron (only the triplet
S-state has). The parametrized version of this potential fits the experimental
phase-shifts. It is given by

V (r) = Va
e−ax

x
+ Vb

e−bx

x
+ Vc

e−cx

x
(6)

with x = µr, µ = 0.7 fm−1 (the inverse of the pion mass), Va = −10.463 MeV
and a = 1, Vb = −1650.6 MeV and b = 4 and Vc = 6484.3 MeV and c = 7. Find
the potential in momentum space using Eq. (2) with j0(kr) = sin(kr)/kr.

The transform of a potential on the form V (r) = V0 exp (−µr)/(µr) which
we rewrite more generally as

Vη
e−ηx

x
,

with x = µr.

Hint. The problem for l = 0 is to evaluate the integral

I = Vη

∫ ∞
0

drr2j0(kr)e
−ηx

x
j0(k′r)

By using the substitution x = µr and converting the product of sines to a
difference of cosines through the relation

sin u sin v = 1
2[cos(u− v)− cos(u+ v)]

we obtain
I = Vη

2µkk′

∫ ∞
0

dx(cosαx− cosβx)e
−ηx

x
.

where α = 1
µ (k − k′) and β = 1

µ (k + k′). This integral can be converted to a
form found in standard integral tables by adding and subtracting 1:

I = Vη
2µkk′

[∫ ∞
0

dx(1− cosβx)e
−ηx

x
−
∫ ∞

0
dx(1− cosαx)e

−ηx

x

]
.

Both integrals are now of the same form and their values are given as

I = Vη
4µkk′ ln

[
(µη)2 + (k + k′)2

(µη)2 + (k − k′)2

]
.

3

Write a function which calculates the expressions for the potential in momen-
tum space.

Project 1c): Handling the principal value problem. The principal value
in Eq. (3) is rather tricky to evaluate numerically, mainly since computers have
limited precision. We will here use a subtraction trick often used when dealing
with singular integrals in numerical calculations. We introduce first the calculus
relation ∫ ∞

−∞

dk

k − k0
= 0. (7)

It means that the curve 1/(k − k0) has equal and opposite areas on both sides
of the singular point k0. If we break the integral into one over positive k and
one over negative k, a change of variable k → −k allows us to rewrite the last
equation as ∫ ∞

0

dk

k2 − k2
0

= 0. (8)

We can use this to express a principal values integral as

P
∫ ∞

0

f(k)dk
k2 − k2

0
=
∫ ∞

0

(f(k)− f(k0))dk
k2 − k2

0
, (9)

where the right-hand side is no longer singular at k = k0, it is proportional to
the derivative df/dk, and can be evaluated numerically as any other integral.

We can then use the trick in Eq. (9) to rewrite Eq. (3) as

R(k, k′) = V (k, k′) + 2
π

∫ ∞
0

dq
q2V (k, q)R(q, k′)− k2

0V (k, k0)R(k0, k
′)

(k2
0 − q2)/m . (10)

This is the equation you are going to solve numerically in order to calculate the
phase shifts of Eq. (5).We are interested in obtaining R(k0, k0).

How do we proceed in order to solve Eq. (10)?
The first step consists in using the mesh points kj and the weights ωj . We

can rewrite Eq. (10) as

R(k, k′) = V (k, k′)+ 2
π

N∑
j=1

ωjk
2
jV (k, kj)R(kj , k′)
(k2

0 − k2
j)/m

− 2
π
k2

0V (k, k0)R(k0, k
′)

N∑
n=1

ωn
(k2

0 − k2
n)/m.

(11)
This equation contains now the unknowns R(ki, kj) (with dimension N ×N) and
R(k0, k0). We can turn Eq. (11) into an equation with dimension (N+1)×(N+1)
with a mesh which contains the original mesh points kj for j = 1, N and the
point which corresponds to the energy k0. Consider the latter as the ’observable’
point. The mesh points become then kj for j = 1, n and kN+1 = k0.

4

With these new mesh points we define the matrix

Ai,j = δi,j − V (ki, kj)uj , (12)

where δ is the Kronecker δ and

uj = 2
π

ωjk
2
j

(k2
0 − k2

j)/m
j = 1, N (13)

and

uN+1 = − 2
π

N∑
j=1

k2
0ωj

(k2
0 − k2

j)/m
. (14)

The first task is then to set up the matrix A for a given k0. This is an (N +
1) × (N + 1) matrix. It can be convenient to have an outer loop which runs
over the chosen observable values for the energy k2

0/m. Note that all mesh
points kj for j = 1, N must be different from k0. Note also that V (ki, kj) is an
(N + 1)× (N + 1) matrix. Write a small function which sets up A.

With the matrix A we can rewrite Eq. (11) as a matrix problem of dimension
(N + 1)× (N + 1). All matrices R, A and V have this dimension and we get

Ai,lRl,j = Vi,j , (15)

or just

AR = V. (16)
Since you already have defined A and V (these are stored as (N + 1)× (N + 1)
matrices) Eq. (16) involves only the unknown R. We obtain it by matrix
inversion, i.e.,

R = A−1V. (17)
Thus, to obtain R, you will need to set up the matrices A and V and invert the
matrix A. To do that you can use the examples on matrix inversion (this link
brings you to the c++ version). With the inverse A−1, performing a matrix
multiplication with V results in R.

With R you can then evaluate the phase shifts by noting that

R(kN+1, kN+1) = R(k0, k0), (18)
and you are done.

You can choose to read k0 from file or screen, or set up a loop over chosen
values of k0 and for each k0 solve Eq. (17).

When you have R(k, k′) for the given potential, evaluate now the phase-shifts
using

R(k0, k0) = − tanδ
mk0

.

Compare the phase shifts for the potential of Eq. (6) with the experimental
phase shifts that can be found in the article of the Nijmegen group in Physical
Review C 48, 792 (1993). Alternatively look up their website

5

https://github.com/ManyBodyPhysics/NuclearForces/tree/master/doc/Programs/ScatteringTheory/Cpp/MatrixInverse
https://github.com/ManyBodyPhysics/NuclearForces/tree/master/doc/Programs/ScatteringTheory/Cpp/MatrixInverse
http://nn-online.org/

Project 1d): Variable Phase Approach. Here we explore a simple alter-
native to the momentum-space matrix inversion for the calculation of scattering
phase shifts called the Variable Phase Approach (VPA). The VPA (in its simplest
formulation) is not as flexible as the matrix inversion method in that it is limited
to local potentials (i.e., 〈r′|V |r〉 = δ3(r− r′)V (r)) without tensor forces. What
the VPA lacks in generality, it makes up for in simplicity and the ability to
better control the numerical accuracy. The VPA also gives a clean way to infer
certain properties of the interaction from the phase shifts (e.g., the existence of a
repulsive short-range component, or the presence of bound states) as illustrated
below. For simplicity, here we only consider s-waves. Good references here are

1. Taylor, Scattering Theory, pages 197-201, and

2. Calogero, The Variable Phase Approach to Potential Scattering, (Academic
Press, New York, 1967).

The questions which follow can be solved through a mix of standard analytical
work and programming.

Define the truncated potential Vρ(r) by

Vρ(r) = V (r)θ(ρ− r) .

That is, it is the usual potential for r ≤ ρ, but identically zero beyond that.
Then we define δ(k, ρ) as the phase shift for Vρ at momentum k. The phase shift
we want is δ(k) = limρ→∞ δ(k, ρ). The basis of the variable phase method is a
differential equation for δ(k, r) at fixed k (again, this is the s-wave equation):

dδ(k, r)
dr

= −1
k

2MV (r) sin2[kr + δ(k, r)],

which is a nonlinear first-order differential equation with initial condition δ(k, 0) =
0. Note that M here is actually the reduced mass of the NN system, and also ask
yourself if there are factors of ~ and/or c that have been set to 1. Think about
how you would implement this in your favorite programming language. As an
example, the Mathematica notebook SquareWellScattering.nb implements the
VPA for a square well. Show that it reproduces the analytically known phase
shifts for the square well result.

Changing to a different potential is trivial (see the illustration at the end of
the notebook with a combined short-range repulsive square well and a mid-range
attractive square well). Implement the toy NN potential that you are using in
your momentum space matrix inversion code as a check on the former.

Show from the VPA differential equation that a fully attractive potential
gives a positive phase shift and a fully negative potential gives a negative phase
shift. This is the cleanest way to see why the s-wave phaseshifts (which change
from positive to negative values at Elab ≈ 270 MeV in the 1S0 partial wave)
imply a strong short-range repulsion for local NN potentials.

The VPA automatically builds in Levinson’s theorem (δ(0) = nπ) about the
number of bound states n and the phase shift at zero energy. How?

6

https://github.com/ManyBodyPhysics/NuclearForces/tree/master/doc/Projects/2017/Project1

Hint. What is the condition imposed on the phase shift at large energy for
Levinson’s theorem? Consider integrating dδ(k, r)/dr in r from zero to infinity.
Use sin2 x ≤ 1 to put a bound on δ(k).

Things to try numerically with the supplied Mathematica or Python note-
books:

1. Try out Levinson’s theorem in practice (e.g., for a square well where the
number of bound states versus depth is easily found in parallel). Also, the
toy NN potential as given does not support a bound state since it describes
scattering in the 1S0 channel, though the large negative scattering length
indicates that there is "almost" a bound state. By gently adjusting the
strength of the longest ranged component of the force, estimate the critical
strength for when a bound state first appears.

2. Explore the effective range expansion by extracting the a and r0 parameters
for 2 different functional forms of V (r) (e.g., the toy NN potential and the
square well potential). Then, try to tune the square well potential so it
gives the same parameters as the other one. This illustrates that there is
no "unique" potential insofar as low-energy data is concernced.

Introduction to numerical projects
Here follows a brief recipe and recommendation on how to write a report for
each project.

• Give a short description of the nature of the problem and the eventual
numerical methods you have used.

• Describe the algorithm you have used and/or developed. Here you may
find it convenient to use pseudocoding. In many cases you can describe
the algorithm in the program itself.

• Include the source code of your program. Comment your program properly.

• If possible, try to find analytic solutions, or known limits in order to test
your program when developing the code.

• Include your results either in figure form or in a table. Remember to label
your results. All tables and figures should have relevant captions and labels
on the axes.

• Try to evaluate the reliabilty and numerical stability/precision of your
results. If possible, include a qualitative and/or quantitative discussion of
the numerical stability, eventual loss of precision etc.

• Try to give an interpretation of you results in your answers to the problems.

7

https://github.com/ManyBodyPhysics/NuclearForces/tree/master/doc/Projects/2017/Project1
https://github.com/ManyBodyPhysics/NuclearForces/tree/master/doc/Projects/2017/Project1

• Critique: if possible include your comments and reflections about the
exercise, whether you felt you learnt something, ideas for improvements
and other thoughts you’ve made when solving the exercise. We wish to
keep this course at the interactive level and your comments can help us
improve it.

• Try to establish a practice where you log your work at the computerlab.
You may find such a logbook very handy at later stages in your work,
especially when you don’t properly remember what a previous test version
of your program did. Here you could also record the time spent on solving
the exercise, various algorithms you may have tested or other topics which
you feel worthy of mentioning.

Format for electronic delivery of report and programs
The preferred format for the report is a PDF file. You can also use DOC or
postscript formats or as an ipython notebook file. As programming language we
prefer that you choose between C/C++, Fortran2008 or Python. The following
prescription should be followed when preparing the report:

• Use your github repository to upload your report. Indicate where the
report is by creating for example a Report folder. Please send us as soon
as possible your github username.

• Place your programs in a folder called for example Programs or src, in
order to indicate where your programs are. You can use a README file
to tell us how your github folders are organized.

• In your git repository, please include a folder which contains selected results.
These can be in the form of output from your code for a selected set of
runs and input parameters.

• In this and all later projects, you should include tests (for example unit
tests) of your code(s).

• Comments from us on your projects, with score and detailed feedback will
be emailed to you.

Finally, we encourage you to work two and two together. Optimal working
groups consist of 2-3 students. You can then hand in a common report.

8

