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Components of the force and isospin
The nuclear forces are almost charge independent. If we assume they are, we

can introduce a new quantum number which is conserved. For nucleons only,
that is a proton and neutron, we can limit ourselves to two possible values which
allow us to distinguish between the two particles. If we assign an isospin value
of τ = 1/2 for protons and neutrons (they belong to an isospin doublet, in the
same way as we discussed the spin 1/2 multiplet), we can define the neutron
to have isospin projection τz = +1/2 and a proton to have τz = −1/2. These
assignements are the standard choices in low-energy nuclear physics.

Phenomenology of nuclear forces
From Yukawa to Lattice QCD and Effective Field Theory.

• Chadwick (1932) discovers the neutron and Heisenberg (1932) proposes
the first Phenomenology (Isospin).

• Yukawa (1935) and his Meson Hypothesis

• Discovery of the pion in cosmic ray (1947) and in the Berkeley Cyclotron
Lab (1948).

• Nobelprize awarded to Yukawa (1949). Rabi (1948) measures quadrupole
moment of the deuteron.

• Taketani, Nakamura, Sasaki (1951): 3 ranges. One-Pion-Exchange (OPE):
o.k.

• Multi-pion exchanges: Problems! Taketani, Machida, Onuma (1952);

• Pion Theories Brueckner, Watson (1953).

c© 2013-2017, Scott Bogner, Morten Hjorth-Jensen. Released under CC
Attribution-NonCommercial 4.0 license

http://www.nscl.msu.edu/
https://www.pa.msu.edu/
http://www.msu.edu/


Phenomenology of nuclear forces
From Yukawa to Lattice QCD and Effective Field Theory.

• Many pions = multi-pion resonances: σ(600), ρ(770), ω(782) etc. One-
Boson-Exchange Model.

• Refined Meson Theories

• Sophisticated models for two-pion exchange:

– Paris Potential (Lacombe et al., Phys. Rev. C 21, 861 (1980))
– Bonn potential (Machleidt et al., Phys. Rep. 149, 1 (1987))

*Quark cluster models. Begin of effective field theory studies.

Phenomenology of nuclear forces
From Yukawa to Lattice QCD and Effective Field Theory.

• 1990’s

– 1993-2001: High-precision NN potentials: Nijmegen I, II, ’93, Reid93
(Stoks et al. 1994),

– Argonne V18 (Wiringa et al, 1995), CD-Bonn (Machleidt et al. 1996
and 2001.

– Advances in effective field theory: Weinberg (1990); Ordonez, Ray,
van Kolck and many more.

• 3rd Millenium

– Another "pion theory"; but now right: constrained by chiral symmetry.
Three-body and higher-body forces appear naturally at a given order
of the chiral expansion.

Nucleon-nucleon interaction from Lattice QCD, final confirmation of meson
hypothesis of Yukawa? See for example Ishii et al, PRL 2007

Phenomenology of nuclear forces
Features of the Nucleon-Nucleon (NN) Force. The aim is to give you
an overview over central features of the nucleon-nucleon interaction and how it
is constructed, with both technical and theoretical approaches.

• The existence of the deuteron with Jπ = 1+ indicates that the force
between protons and neutrons is attractive at least for the 3S1 partial wave.
Interference between Coulomb and nuclear scattering for the proton-proton
partial wave 1S0 shows that the NN force is attractive at least for the 1S0
partial wave.
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• It has a short range and strong intermediate attraction.

• Spin dependent, scattering lengths for triplet and singlet states are different,

• Spin-orbit force. Observation of large polarizations of scattered nucleons
perpendicular to the plane of scattering.

Phenomenology of nuclear forces

• Strongly repulsive core. The s-wave phase shift becomes negative at ≈ 250
MeV implying that the singlet S has a hard core with range 0.4− 0.5 fm.

• Charge independence (almost). Two nucleons in a given two-body state
always (almost) experience the same force. Modern interactions break
charge and isospin symmetry lightly. That means that the pp, neutron-
neutron and pn parts of the interaction will be different for the same
quantum numbers.

• Non-central. There is a tensor force. First indications from the quadrupole
moment of the deuteron pointing to an admixture in the ground state of
both l = 2 (3D1) and l = 0 (3S1) orbital momenta.

Phenomenology of nuclear forces
Short Range Evidence. Comparison of the binding energies of 2H (deuteron),
3H (triton), 4He (alpha - particle) show that the nuclear force is of finite range
(1− 2 fm) and very strong within that range.

For nuclei with A > 4, the energy saturates: Volume and binding energies of
nuclei are proportional to the mass number A (as we saw from exercise 1).

Nuclei are also bound. The average distance between nucleons in nuclei is
about 2 fm which must roughly correspond to the range of the attractive part.

Phenomenology of nuclear forces
Charge Dependence.

• After correcting for the electromagnetic interaction, the forces between
nucleons (pp, nn, or np) in the same state are almost the same.

• Almost the same: Charge-independence is slightly broken.

• Equality between the pp and nn forces: Charge symmetry.

• Equality between pp/nn force and np force: Charge independence.

• Better notation: Isospin symmetry, invariance under rotations in isospin
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Phenomenology of nuclear forces
Charge Dependence, 1S0 Scattering Lengths. Charge-symmetry break-
ing (CSB), after electromagnetic effects have been removed:

• app = −17.3± 0.4fm

• ann = −18.8±0.5fm. Note however discrepancy from nd breakup reactions
resulting in ann = −18.72± 0.13± 0.65fm and π− + d→ γ + 2n reactions
giving ann = −18.93± 0.27± 0.3fm.

Charge-independence breaking (CIB)

• apn = −23.74± 0.02fm

Symmetries of the Nucleon-Nucleon (NN) Force

• Translation invariance

• Galilean invariance

• Rotation invariance in space

• Space reflection invariance

• Time reversal invariance

• Invariance under the interchange of particle 1 and 2

• Almost isospin symmetry

A typical form of the nuclear force
Here we display a typical way to parametrize (non-relativistic expression) the

nuclear two-body force in terms of some operators, the central part, the spin-spin
part and the central force.

V (r) =
{
Cc + Cσσ1 · σ2 + CT

(
1 + 3

mαr
+ 3

(mαr)2

)
S12(r̂)

+CSL

(
1

mαr
+ 1

(mαr)2

)
L · S

}
e−mαr

mαr

How do we derive such terms? (Note: no isospin dependence and that the above
is an approximation)
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Nuclear forces
To derive the above famous form of the nuclear force using field theoretical

concepts, we will need some elements from relativistic quantum mechanics. These
derivations will be given below. The material here gives some background to this.
I know that many of you have not taken a course in quantum field theory. I hope
however that you can see the basic ideas leading to the famous non-relativistic
expressions for the nuclear force.

Furthermore, when we analyze nuclear data, we will actually try to
explain properties like spectra, single-particle energies etc in terms
of the various terms of the nuclear force. Moreover, many of you
will hear about these terms at various talks, workshops, seminars etc.
Then, it is good to have an idea of what people actually mean!!

Dramatis Personae

Baryons Mass (MeV) Mesons Mass (MeV)
p, n 938.926 π 138.03
Λ 1116.0 η 548.8
Σ 1197.3 σ ≈ 550.0
∆ 1232.0 ρ 770

ω 782.6
δ 983.0
K 495.8
K? 895.0

Components of the force and quantum numbers
But before we proceed, we will look into specific quantum numbers of the

relative system and study expectation vaues of the various terms of

V (r) =
{
Cc + Cσσ1 · σ2 + CT

(
1 + 3

mαr
+ 3

(mαr)2

)
S12(r̂)

+CSL

(
1

mαr
+ 1

(mαr)2

)
L · S

}
e−mαr

mαr

Relative and CoM system, quantum numbers
When solving the scattering equation or solving the two-nucleon problem, it is

convenient to rewrite the Schroedinger equation, due to the spherical symmetry
of the Hamiltonian, in relative and center-of-mass coordinates. This will also
define the quantum numbers of the relative and center-of-mass system and
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will aid us later in solving the so-called Lippman-Schwinger equation for the
scattering problem.

We define the center-of-mass (CoM) momentum as

K =
A∑
i=1

ki,

with ~ = c = 1 the wave number ki = pi, with pi the pertinent momentum of a
single-particle state. We have also the relative momentum

kij = 1
2(ki − kj).

We will below skip the indices ij and simply write k

Relative and CoM system, quantum numbers
In a similar fashion we can define the CoM coordinate

R = 1
A

A∑
i=1

ri,

and the relative distance
rij = (ri − rj).

Relative and CoM system, quantum numbers
With the definitions

K =
A∑
i=1

ki,

and
kij = 1

2(ki − kj).

we can rewrite the two-particle kinetic energy (note that we use ~ = c = 1 as

k2
1

2mn
+ k2

2
2mn

= k2

mn
+ K2

4mn
,

where mn is the average of the proton and the neutron masses.

Relative and CoM system, quantum numbers
Since the two-nucleon interaction depends only on the relative distance, this

means that we can separate Schroedinger’s equation in an equation for the
center-of-mass motion and one for the relative motion.

With an equation for the relative motion only and a separate one for the
center-of-mass motion we need to redefine the two-body quantum numbers.
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Previously we had a two-body state vector defined as |(j1j2)JMJ〉 in a
coupled basis. We will now define the quantum numbers for the relative motion.
Here we need to define new orbital momenta (since these are the quantum
numbers which change). We define

l̂1 + l̂2 = λ̂ = l̂ + L̂,

where l̂ is the orbital momentum associated with the relative motion and L̂ the
corresponding one linked with the CoM. The total spin S is unchanged since it
acts in a different space. We have thus that

Ĵ = l̂ + L̂+ Ŝ,

which allows us to define the angular momentum of the relative motion

J = l̂ + Ŝ,

where J is the total angular momentum of the relative motion.

Phenomenology of nuclear forces
The total two-nucleon state function has to be anti-symmetric. The total

function contains a spatial part, a spin part and an isospin part. If isospin is
conserved, this leads to in case we have an s-wave with spin S = 0 to an isospin
two-body state with T = 1 since the spatial part is symmetric and the spin part
is anti-symmetric.

Since the projections for T are Tz = −1, 0, 1, we can have a pp, an nn and a
pn state.

For l = 0 and S = 1, a so-called triplet state, 3S1, we must have T = 0,
meaning that we have only one state, a pn state. For other partial waves, the
following table lists states up to f waves. We can systemize this in a table as
follows, recalling that |l− S| ≤ |J| ≤ |l + S|,

2S+1lJ J l S T |pp〉 |pn〉 |nn〉
1S0 0 0 0 1 yes yes yes
3S1 1 0 1 0 no yes no
3P0 0 1 1 1 yes yes yes
1P1 1 1 0 0 no yes no
3P1 1 1 1 1 yes yes yes
3P2 2 1 1 1 yes yes yes
3D1 1 2 1 0 no yes no
3F2 2 3 1 1 yes yes yes

Components of the force and quantum numbers
The tensor force is given by

S12(r̂) = 3
r2 (σ1 · r) (σ2 · r)− σ1 · σ2
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where the Pauli matrices are defined as

σx =
{

0 1
1 0

}
,

σy =
{

0 −ı
ı 0

}
,

and
σz =

{
1 0
0 −1

}
,

with the properties σ = 2S (the spin of the system, being 1/2 for nucleons),
σ2
x = σ2

y = σz = 1 and obeying the commutation and anti-commutation relations
{σx, σy} = 0 [σx, σy] = ıσz etc.

Components of the force and quantum numbers
When we look at the expectation value of 〈σ1 · σ2〉, we can rewrite this

expression in terms of the spin S = s1 + s2, resulting in

〈σ1 · σ2〉 = 2(S2 − s2
1 − s2

2) = 2S(S + 1)− 3,

where we s1 = s2 = 1/2 leading to{
〈σ1 · σ2〉 = 1 if S = 1
〈σ1 · σ2〉 = −3 if S = 0

Components of the force and quantum numbers
Similarly, the expectation value of the spin-orbit term is

〈lS〉 = 1
2 (J(J + 1)− l(l + 1)− S(S + 1)) ,

which means that for s-waves with either S = 0 and thereby J = 0 or S = 1 and
J = 1, the expectation value for the spin-orbit force is zero. With the above
phenomenological model, the only contributions to the expectation value of the
potential energy for s-waves stem from the central and the spin-spin components
since the expectation value of the tensor force is also zero.

Components of the force and quantum numbers
For s = 1/2 spin values only for two nucleons, the expectation value of the

tensor force operator is
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l′

l J + 1 J J − 1

J + 1 − 2J(J+2)
2J+1 0 6

√
J(J+1)

2J+1

J 0 2 0

J − 1 6
√
J(J+1)

2J+1 0 − 2(2J+1)
2J+1

We will derive these expressions after we have discussed the Wigner-Eckart
theorem.

Components of the force and isospin
If we now add isospin to our simple V4 interaction model, we end up with 8

operators, popularly dubbed V8 interaction model. The explicit form reads

V (r) =
{
Cc + Cσσ1 · σ2 + CT

(
1 + 3

mαr
+ 3

(mαr)2

)
S12(r̂)

+CSL

(
1

mαr
+ 1

(mαr)2

)
L · S

}
e−mαr

mαr

+
{
Ccτ + Cστσ1 · σ2 + CTτ

(
1 + 3

mαr
+ 3

(mαr)2

)
S12(r̂)

+CSLτ

(
1

mαr
+ 1

(mαr)2

)
L · S

}
τ1 · τ2

e−mαr

mαr

Phenomenology of nuclear forces
References for Various Phenomenological Interactions. From 1950 till
approximately 2000: One-Boson-Exchange (OBE) models dominate. These are
models which typically include several low-mass mesons, that is with masses
below 1 GeV. Potentials which are based upon the standard non-relativistic
operator structure are called "Phenomenological Potentials" Some historically
important examples are

• Gammel-Thaler potential ( Phys. Rev. 107, 291, 1339 (1957) and the

• Hamada-Johnston potential, Nucl. Phys. 34, 382 (1962)), both with a
hard core.

• Reid potential (Ann. Phys. (N.Y.) 50, 411 (1968)), soft core.
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• Argonne V14 potential (Wiringa et al., Phys. Rev. C 29, 1207 (1984)) with
14 operators and the Argonne V18 potential (Wiringa et al., Phys. Rev. C
51, 38 (1995)), uses 18 operators

• A good historical reference: R. Machleidt, Adv. Nucl. Phys. 19, 189 (1989).

Now: models based on chiral perturbation theory. These are effective models
with nucleons and pions as degrees of freedom only. The other mesons which
appeared in standard one-boson model appear as multi-pion resonances.

Phenomenology of nuclear forces
The total two-nucleon state function has to be anti-symmetric. The total

function contains a spatial part, a spin part and an isospin part. If isospin is
conserved, this leads to in case we have an s-wave with spin S = 0 to an isospin
two-body state with T = 1 since the spatial part is symmetric and the spin part
is anti-symmetric.

Since the projections for T are Tz = −1, 0, 1, we can have a pp, an nn and a
pn state.

For l = 0 and S = 1, a so-called triplet state, 3S1, we must have T = 0,
meaning that we have only one state, a pn state. For other partial waves, see
exercises below.

Phenomenology of nuclear forces
Phenomenology of one-pion exchange. The one-pion exchange contribu-
tion (see derivation below), can be written as

Vπ(r) = − f2
π

4πm2
π

τ1 · τ2
1
3

{
σ1 · σ2 +

(
1 + 3

mπr
+ 3

(mπr)2

)
S12(r̂)

}
e−mπr

mπr
.

Here the constant f2
π/4π ≈ 0.08 and the mass of the pion is mπ ≈ 140 MeV/c2.

Phenomenology of nuclear forces
Let us look closer at specific partial waves for which one-pion exchange is

applicable. If we have S = 0 and T = 0, the orbital momentum has to be an
odd number in order for the total anti-symmetry to be obeyed. For S = 0, the
tensor force component is zero, meaning that the only contribution is

Vπ(r) = 3f2
π

4πm2
π

e−mπr

mπr
,

since 〈σ1 · σ2〉 = −3, that is we obtain a repulsive contribution to partial waves
like 1P0.
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Phenomenology of nuclear forces
Since S = 0 yields always a zero tensor force contribution, for the combination

of T = 1 and then even l values, we get an attractive contribution

Vπ(r) = − f2
π

4πm2
π

e−mπr

mπr
.

With S = 1 and T = 0, l can only take even values in order to obey the
anti-symmetry requirements and we get

Vπ(r) = − f2
π

4πm2
π

(
1 + (1 + 3

mπr
+ 3

(mπr))2 )S12(r̂)
)
e−mπr

mπr
,

while for S = 1 and T = 1, l can only take odd values, resulting in a repulsive
contribution

Vπ(r) = 1
3

f2
π

4πm2
π

(
1 + (1 + 3

mπr
+ 3

(mπr)2 )S12(r̂)
)
e−mπr

mπr
.

Phenomenology of nuclear forces
The central part of one-pion exchange interaction, arising from the spin-spin

term, is thus attractive for s-waves and all even l values. For p-waves and all
other odd values it is repulsive. However, its overall strength is weak. This is
discussed further in one of exercises below.

Discuss chiral symmetry, Goldstone bosons, PCAC etc
Add material here

*
Exercise 1: Allowed partial waves

paragraphparagraph>paragraph>-0.5em

a) List all allowed according to the Pauli principle partial waves with isospin
T , their projection Tz, spin S, orbital angular momentum l and total spin J for
J ≤ 3. Use the standard spectroscopic notation 2S+1LJ to label different partial
waves. A proton-proton state has TZ = −1, a proton-neutron state has Tz = 0
and a neutron-neutron state has Tz = 1.

*
Exercise 2: Spin-orbit force and spin-spin terms
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paragraphparagraph>paragraph>-0.5em

a) Find the closed form expression for the spin-orbit force. Show that the spin-
orbit force LS gives a zero contribution for S-waves (orbital angular momentum
l = 0). What is the value of the spin-orbit force for spin-singlet states (S = 0)?

paragraphparagraph>paragraph>-0.5em

b) Find thereafter the expectation value of σ1 · σ2, where σi are so-called
Pauli matrices.

paragraphparagraph>paragraph>-0.5em

c) Add thereafter isospin and find the expectation value of σ1 ·σ2τ1 ·τ2, where
τi are also so-called Pauli matrices. List all the cases with S = 0, 1 and T = 0, 1.

*
Exercise 3: One-pion exchange

A simple parametrization of the nucleon-nucleon force is given by what is
called the V8 potential model, where we have kept eight different operators.
These operators contain a central force, a spin-orbit force, a spin-spin force and
a tensor force. Several features of the nuclei can be explained in terms of these
four components. Without the Pauli matrices for isospin the final form of such
an interaction model results in the following form:

V (r) =
{
Cc + Cσσ1 · σ2 + CT

(
1 + 3

mαr
+ 3

(mαr)2

)
S12(r̂)

+CSL

(
1

mαr
+ 1

(mαr)2

)
L · S

}
e−mαr

mαr

where mα is the mass of the relevant meson and S12 is the familiar tensor term.
The various coefficients Ci are normally fitted so that the potential reproduces
experimental scattering cross sections. By adding terms which include the isospin
Pauli matrices results in an interaction model with eight operators.

The expectaction value of the tensor operator is non-zero only for S = 1. We
will show this in a forthcoming lecture, after that we have derived the Wigner-
Eckart theorem. Here it suffices to know that the expectaction value of the
tensor force for different partial values is (with l the orbital angular momentum
and J the total angular momentum in the relative and center-of-mass frame of
motion)

〈lJ S = 1|S12|l′J S = 1〉 = −2J (J + 2)
2J + 1 l = J + 1 and l′ = J + 1,

〈lJ S = 1|S12|l′J S = 1〉 =
6
√
J (J + 1)
2J + 1 l = J + 1 and l′ = J − 1,
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〈lJ S = 1|S12|l′J S = 1〉 =
6
√
J (J + 1)
2J + 1 l = J − 1 and l′ = J + 1,

〈lJ S = 1|S12|l′J S = 1〉 = −2(J − 1)
2J + 1 l = J − 1 and l′ = J − 1,

〈lJ S = 1|S12|l′J S = 1〉 = 2 l = J and l′ = J ,

and zero else.
In this exercise we will focus only on the one-pion exchange term of the

nuclear force, namely

Vπ(r) = − f2
π

4πm2
π

τ1 · τ2
1
3

{
σ1 · σ2 +

(
1 + 3

mπr
+ 3

(mπr)2

)
S12(r̂)

}
e−mπr

mπr
.

Here the constant f2
π/4π ≈ 0.08 and the mass of the pion is mπ ≈ 140 MeV/c2.

paragraphparagraph>paragraph>-0.5em

a) Compute the expectation value of the tensor force and the spin-spin and
isospin operators for the one-pion exchange potential for all partial waves you
found in exercise 9. Comment your results. How does the one-pion exchange part
behave as function of different l, J and S values? Do you see some patterns?

paragraphparagraph>paragraph>-0.5em

b) For the binding energy of the deuteron, with the ground state defined
by the quantum numbers l = 0, S = 1 and J = 1, the tensor force plays an
important role due to the admixture from the l = 2 state. Use the expectation
values of the different operators of the one-pion exchange potential and plot
the ratio of the tensor force component over the spin-spin component of the
one-pion exchange part as function of x = mπr for the l = 2 state (that is the
case l, l′ = J + 1). Comment your results.
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