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Dramatis Personae

Baryons Mass (MeV) Mesons Mass (MeV)
p, n 938.926 π 138.03
Λ 1116.0 η 548.8
Σ 1197.3 σ ≈ 550.0
∆ 1232.0 ρ 770

ω 782.6
δ 983.0
K 495.8
K? 895.0

Components of the force and quantum numbers
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Relative and CoM system, quantum numbers
When solving the scattering equation or solving the two-nucleon problem, it is

convenient to rewrite the Schroedinger equation, due to the spherical symmetry
of the Hamiltonian, in relative and center-of-mass coordinates. This will also
define the quantum numbers of the relative and center-of-mass system and
will aid us later in solving the so-called Lippman-Schwinger equation for the
scattering problem.

We define the center-of-mass (CoM) momentum as

K =
A∑
i=1

ki,

with ~ = c = 1 the wave number ki = pi, with pi the pertinent momentum of a
single-particle state. We have also the relative momentum

kij = 1
2(ki − kj).

We will below skip the indices ij and simply write k

Relative and CoM system, quantum numbers
In a similar fashion we can define the CoM coordinate

R = 1
A

A∑
i=1

ri,

and the relative distance
rij = (ri − rj).

Relative and CoM system, quantum numbers
With the definitions

K =
A∑
i=1

ki,

and
kij = 1

2(ki − kj).

we can rewrite the two-particle kinetic energy (note that we use ~ = c = 1 as

k2
1

2mn
+ k2

2
2mn

= k2

mn
+ K2

4mn
,

where mn is the average of the proton and the neutron masses.
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Relative and CoM system, quantum numbers
Since the two-nucleon interaction depends only on the relative distance, this

means that we can separate Schroedinger’s equation in an equation for the
center-of-mass motion and one for the relative motion.

With an equation for the relative motion only and a separate one for the
center-of-mass motion we need to redefine the two-body quantum numbers.

Previously we had a two-body state vector defined as |(j1j2)JMJ〉 in a
coupled basis. We will now define the quantum numbers for the relative motion.
Here we need to define new orbital momenta (since these are the quantum
numbers which change). We define

l̂1 + l̂2 = λ̂ = l̂ + L̂,

where l̂ is the orbital momentum associated with the relative motion and L̂ the
corresponding one linked with the CoM. The total spin S is unchanged since it
acts in a different space. We have thus that

Ĵ = l̂ + L̂+ Ŝ,

which allows us to define the angular momentum of the relative motion

J = l̂ + Ŝ,

where J is the total angular momentum of the relative motion.

Phenomenology of nuclear forces
The total two-nucleon state function has to be anti-symmetric. The total

function contains a spatial part, a spin part and an isospin part. If isospin is
conserved, this leads to in case we have an s-wave with spin S = 0 to an isospin
two-body state with T = 1 since the spatial part is symmetric and the spin part
is anti-symmetric.

Since the projections for T are Tz = −1, 0, 1, we can have a pp, an nn and a
pn state.

For l = 0 and S = 1, a so-called triplet state, 3S1, we must have T = 0,
meaning that we have only one state, a pn state. For other partial waves, the
following table lists states up to f waves. We can systemize this in a table as
follows, recalling that |l− S| ≤ |J| ≤ |l + S|,

2S+1lJ J l S T |pp〉 |pn〉 |nn〉
1S0 0 0 0 1 yes yes yes
3S1 1 0 1 0 no yes no
3P0 0 1 1 1 yes yes yes
1P1 1 1 0 0 no yes no
3P1 1 1 1 1 yes yes yes
3P2 2 1 1 1 yes yes yes
3D1 1 2 1 0 no yes no
3F2 2 3 1 1 yes yes yes
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Prelude to the Lippmann-Schwinger equation: Interaction,
Heisenberg and Schroedinger pictures
In order to derive the various rules for computing diagrams, we find it easier,
in particular with respect to the computation of energy denominators, to use
time-dependent perturbation theory. This is normally used as a starting point
for Green’s function based methods as well. In addition it links the formalism to
what is done in quantum field theory. Before we start we will find it convenient
to define various representations of Schroedinger’s equation.

The Schroedinger picture
The time-dependent Schroedinger equation (or equation of motion) reads

The time-dependent Schroedinger equation (or equation of motion) reads

ı~
∂

∂t
|ΨS(t)〉 = ĤΨS(t)〉,

where the subscript S stands for Schroedinger here.

The Schroedinger picture, formal solution
A formal solution is given by

|ΨS(t)〉 = exp (−ıĤ(t− t0)/~)|ΨS(t0)〉.

The Hamiltonian Ĥ is hermitian and the exponent represents a unitary operator
with an operation carried ut on the wave function at a time t0.

Our Hamiltonian is normally written out as the sum of an unperturbed part
Ĥ0 and an interaction part ĤI , that is

Ĥ = Ĥ0 + ĤI .

In general we have [Ĥ0, ĤI ] 6= 0 since [T̂ , V̂ ] 6= 0.

The Schroedinger picture, unitary transformation
We wish now to define a unitary transformation in terms of Ĥ0 by defining

|ΨI(t)〉 = exp (ıĤ0t/~)|ΨS(t)〉,

which is again a unitary transformation carried out now at the time t on the
wave function in the Schroedinger picture.

We can easily find the equation of motion by taking the time derivative

ı~
∂

∂t
|ΨI(t)〉 = −Ĥ0 exp (ıĤ0t/~)ΨS(t)〉+ exp (ıĤ0t/~)ı~ ∂

∂t
ΨS(t)〉.
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The Schroedinger picture, final manipulation
Using the definition of the Schroedinger equation, we can rewrite the last equation
as

ı~
∂

∂t
|ΨI(t)〉 = exp (ıĤ0t/~)

[
−Ĥ0 + Ĥ0 + ĤI

]
exp (−ıĤ0t/~)ΨI(t)〉,

which gives us

ı~
∂

∂t
|ΨI(t)〉 = ĤI(t)ΨI(t)〉,

with

ĤI(t) = exp (ıĤ0t/~)ĤI exp (−ıĤ0t/~).

The Schroedinger picture
The order of the operators is important since Ĥ0 and ĤI do generally not
commute. The expectation value of an arbitrary operator in the interaction
picture can now be written as

〈Ψ′S(t)|ÔS |ΨS(t)〉 = 〈Ψ′I(t)| exp (ıĤ0t/~)ÔI exp (−ıĤ0t/~)|ΨI(t)〉,

and using the definition

ÔI(t) = exp (ıĤ0t/~)ÔI exp (−ıĤ0t/~),

we obtain

〈Ψ′S(t)|ÔS |ΨS(t)〉 = 〈Ψ′I(t)|ÔI(t)|ΨI(t)〉,

stating that a unitary transformation does not change expectation values!

The interaction picture
If the take the time derivative of the operator in the interaction picture we arrive
at the following equation of motion

ı~
∂

∂t
ÔI(t) = exp (ıĤ0t/~)

[
ÔSĤ0 − Ĥ0ÔS

]
exp (−ıĤ0t/~) =

[
ÔI(t), Ĥ0

]
.

Here we have used the time-independence of the Schroedinger equation together
with the observation that any function of an operator commutes with the operator
itself.
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The interaction picture, finding expressions
In order to solve the equation of motion equation in the interaction picture,
we define a unitary operator time-development operator Û(t, t′). Later we will
derive its connection with the linked-diagram theorem, which yields a linked
expression for the actual operator. The action of the operator on the wave
function is

|ΨI(t)〉 = Û(t, t0)|ΨI(t0)〉,

with the obvious value Û(t0, t0) = 1.

The interaction picture, time-development operator
The time-development operator U has the properties that

Û†(t, t′)Û(t, t′) = Û(t, t′)Û†(t, t′) = 1,

which implies that U is unitary

Û†(t, t′) = Û−1(t, t′).

Further,

Û(t, t′)Û(t′t′′) = Û(t, t′′)

and

Û(t, t′)Û(t′, t) = 1,

which leads to

Û(t, t′) = Û†(t′, t).

The interaction picture, equation of motion
Using our definition of Schroedinger’s equation in the interaction picture, we
can then construct the operator Û . We have defined

|ΨI(t)〉 = exp (ıĤ0t/~)|ΨS(t)〉,

which can be rewritten as

|ΨI(t)〉 = exp (ıĤ0t/~) exp (−ıĤ(t− t0)/~)|ΨS(t0)〉,

or

|ΨI(t)〉 = exp (ıĤ0t/~) exp (−ıĤ(t− t0)/~) exp (−ıĤ0t0/~)|ΨI(t0)〉.
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The interaction picture, more equation motion stuff
From the last expression we can define

Û(t, t0) = exp (ıĤ0t/~) exp (−ıĤ(t− t0)/~) exp (−ıĤ0t0/~).
It is then easy to convince oneself that the properties defined above are satisfied
by the definition of Û .

We derive the equation of motion for Û using the above definition. This
results in

ı~
∂

∂t
Û(t, t0) = ĤI(t)Û(t, t0),

which we integrate from t0 to a time t resulting in

Û(t, t0)− Û(t0, t0) = Û(t, t0)− 1 = − ı
~

∫ t

t0

dt′ĤI(t′)Û(t′, t0),

which can be rewritten as

Û(t, t0) = 1− ı

~

∫ t

t0

dt′ĤI(t′)Û(t′, t0).

The interaction picture, iterative solution
We can solve this equation iteratively keeping in mind the time-ordering of the
of the operators

Û(t, t0) = 1− ı

~

∫ t

t0

dt′ĤI(t′) +
(
−ı
~

)2 ∫ t

t0

dt′
∫ t′

t0

dt′′ĤI(t′)ĤI(t′′) + . . .

The third term can be written as

∫ t

t0

dt′
∫ t′

t0

dt′′ĤI(t′)ĤI(t′′) = 1
2

∫ t

t0

dt′
∫ t′

t0

dt′′ĤI(t′)ĤI(t′′)+
1
2

∫ t

t0

dt′′
∫ t

t′′
dt′ĤI(t′)ĤI(t′′).

The interaction picture, final stage
We obtain this expression by changing the integration order in the second term
via a change of the integration variables t′ and t′′ in

1
2

∫ t

t0

dt′
∫ t′

t0

dt′′ĤI(t′)ĤI(t′′).

We can rewrite the terms which contain the double integral as∫ t

t0

dt′
∫ t′

t0

dt′′ĤI(t′)ĤI(t′′) =

7



1
2

∫ t

t0

dt′
∫ t′

t0

dt′′
[
ĤI(t′)ĤI(t′′)Θ(t′ − t′′) + ĤI(t′)ĤI(t′′)Θ(t′′ − t′)

]
,

with Θ(t′′− t′) being the standard Heavyside or step function. The step function
allows us to give a specific time-ordering to the above expression.

The interaction picture, rewriting the wave operator
With the Θ-function we can rewrite the last expression as

∫ t

t0

dt′
∫ t′

t0

dt′′ĤI(t′)ĤI(t′′) = 1
2

∫ t

t0

dt′
∫ t′

t0

dt′′T̂
[
ĤI(t′)ĤI(t′′)

]
,

where T̂ is the so-called time-ordering operator.
With this definition, we can rewrite the expression for Û as

Û(t, t0) =
∞∑
n=0

(
−ı
~

)n 1
n1

∫ t

t0

dt1· · ·
∫ t

t0

dtN T̂
[
ĤI(t1) . . . ĤI(tn)

]
= T̂ exp

[
−ı
~

∫ t

t0

dt′ĤI(t′)
]
.

The above time-evolution operator in the interaction picture will be used to
derive various contributions to many-body perturbation theory.

The Heisenberg picture
We wish now to define a unitary transformation in terms of Ĥ by defining

|ΨH(t)〉 = exp (ıĤt/~)|ΨS(t)〉,

which is again a unitary transformation carried out now at the time t on the
wave function in the Schroedinger picture. If we combine this equation with
Schroedinger’s equation we obtain the following equation of motion

ı~
∂

∂t
|ΨH(t)〉 = 0,

meaning that |ΨH(t)〉 is time independent. An operator in this picture is defined
as

ÔH(t) = exp (ıĤt/~)ÔS exp (−ıĤt/~).
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The time dependence in the Heisenberg picture
The time dependence is then in the operator itself, and this yields in turn the
following equation of motion

ı~
∂

∂t
ÔH(t) = exp (ıĤt/~)

[
ÔHĤ − ĤÔH

]
exp (−ıĤt/~) =

[
ÔH(t), Ĥ

]
.

We note that an operator in the Heisenberg picture can be related to the
corresponding operator in the interaction picture as

ÔH(t) = exp (ıĤt/~)ÔS exp (−ıĤt/~) =

exp (ıĤIt/~) exp (−ıĤ0t/~)ÔI exp (ıĤ0t/~) exp (−ıĤIt/~).

The Heisenberg picture
With our definition of the time evolution operator we see that

ÔH(t) = Û(0, t)ÔI Û(t, 0),

which in turn implies that ÔS = ÔI(0) = ÔH(0), all operators are equal at t = 0.
The wave function in the Heisenberg formalism is related to the other pictures as

|ΨH〉 = |ΨS(0)〉 = |ΨI(0)〉,

since the wave function in the Heisenberg picture is time independent.

The Heisenberg picture and the time evolution operator
We can relate this wave function to that a given time t via the time evolution
operator as

|ΨH〉 = Û(0, t)|ΨI(t)〉.

We assume that the interaction term is switched on gradually. Our wave
function at time t = −∞ and t =∞ is supposed to represent a non-interacting
system given by the solution to the unperturbed part of our Hamiltonian Ĥ0. We
assume the ground state is given by |Φ0〉, which could be a Slater determinant.

The adiabatic hypothesis
We define our Hamiltonian as

Ĥ = Ĥ0 + exp (−εt/~)ĤI ,

where ε is a small number. The way we write the Hamiltonian and its interaction
term is meant to simulate the switching of the interaction.
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The time evolution of the wave function in the interaction picture is then

|ΨI(t)〉 = Ûε(t, t0)|ΨI(t0)〉,

with

Ûε(t, t0) =
∞∑
n=0

(
−ı
~

)n 1
n!

∫ t

t0

dt1· · ·
∫ t

t0

dtN exp (−ε(t1 + · · ·+ tn)/~)T̂
[
ĤI(t1) . . . ĤI(tn)

]

The adiabatic hypothesis and the wave operator
In the limit t0 → −∞, the solution ot Schroedinger’s equation is |Φ0〉, and the
eigenenergies are given by

Ĥ0|Φ0〉 = W0|Φ0〉,

meaning that

|ΨS(t0)〉 = exp (−ıW0t0/~)|Φ0〉,

with the corresponding interaction picture wave function given by

|ΨI(t0)〉 = exp (ıĤ0t0/~)|ΨS(t0)〉 = |Φ0〉.

The adiabatic hypothesis and the wave operator, more de-
tails
The solution becomes time independent in the limit t0 → −∞. The same
conclusion can be reached by looking at

ı~
∂

∂t
|ΨI(t)〉 = exp (−ε|t|/~)ĤI |ΨI(t)〉

and taking the limit t→ ±∞. We can rewrite the equation for the wave function
at a time t = 0 as

|ΨI(0)〉 = Ûε(0,−∞)|Φ0〉.

The Lippman-Schwinger equation for two-nucleon scatter-
ing
What follows now is a more technical discussion on how we can solve the

two-nucleon problem. This will lead us to the so-called Lippman-Schwinger
equation for the scattering problem and a rewrite of Schroedinger’s equation in
relative and center-of-mass coordinates.

Before we break down the Schroedinger equation into a partial wave decompo-
sition, we derive now the so-called Lippman-Schwinger equation. We will do this
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in an operator form first. Thereafter, we rewrite it in terms of various quantum
numbers such as relative momenta, orbital momenta etc. The Schroedinger
equation in abstract vector representation is(

Ĥ0 + V̂
)
|ψn〉 = En|ψn〉.

In our case for the two-body problem Ĥ0 is just the kinetic energy. We rewrite
it as (

Ĥ0 − En
)
|ψn〉 = −V̂ |ψn〉.

We assume that the invers of
(
Ĥ0 − En

)
exists and rewrite this equation as

|ψn〉 = 1(
En − Ĥ0

) V̂ |ψn〉.
The Lippman-Schwinger equation for two-nucleon scatter-
ing
The equation

|ψn〉 = 1(
En − Ĥ0

) V̂ |ψn〉,
is normally solved in an iterative fashion. We assume first that

|ψn〉 = |φn〉,

where |φn〉 are the eigenfunctions of

Ĥ0|φn〉 = ωn|φn〉

the so-called unperturbed problem. In our case, these will simply be the kinetic
energies of the relative motion.

The Lippman-Schwinger equation for two-nucleon scatter-
ing
Inserting |φn〉 on the right-hand side of

|ψn〉 = 1
(En − Ĥ0)

V̂ |ψn〉,

yields
|ψn〉 = |φn〉+ 1(

En − Ĥ0

) V̂ |φn〉,
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as our first iteration. Reinserting again gives

|ψn〉 = |φn〉+ 1(
En − Ĥ0

) V̂ |φn〉+ 1
(En − Ĥ0)

V̂
1(

En − Ĥ0

) V̂ |φn〉,
and continuing we obtain

|ψn〉 =
∞∑
i=0

[
1

(En − Ĥ0)
V̂

]i
|φn〉.

The Lippman-Schwinger equation for two-nucleon scatter-
ing
It is easy to see that

|ψn〉 =
∞∑
i=0

[
1

(En − Ĥ0)
V̂

]i
|φn〉,

can be rewritten as

|ψn〉 = |φn〉+
1

(En − Ĥ0)
V̂

(
1 + 1

(En − Ĥ0)
V̂ + 1

(En − Ĥ0)
V̂

1
(En − Ĥ0)

V̂ + . . .

]
|φn〉,

which we rewrite as

|ψn〉 = |φn〉+ 1
(En − Ĥ0)

V̂ |ψn〉.

The Lippman-Schwinger equation for two-nucleon scatter-
ing
In operator form we have thus

|ψn〉 = |φn〉+ 1
(En − Ĥ0)

V̂ |ψn〉.

We multiply from the left with V̂ and 〈φm| and obtain

〈φm|V̂ |ψn〉 = 〈φm|V̂ |φn〉+ 〈φm|V̂
1

(En − Ĥ0)
V̂ |ψn〉.

We define thereafter the so-called T -matrix as

〈φm|T̂ |φn〉 = 〈φm|V̂ |ψn〉.

We can rewrite our equation as

〈φm|T̂ |φn〉 = 〈φm|V̂ |φn〉+ 〈φm|V̂
1

(En − Ĥ0)
T̂ |φn〉.
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The Lippman-Schwinger equation for two-nucleon scatter-
ing
The equation

〈φm|T̂ |φn〉 = 〈φm|V̂ |φn〉+ 〈φm|V̂
1

(En − Ĥ0)
T̂ |φn〉,

is called the Lippman-Schwinger equation. Inserting the completeness relation

1 =
∑
n

|φn〉〈φn|, 〈φn|φn′〉 = δn,n′

we have

〈φm|T̂ |φn〉 = 〈φm|V̂ |φn〉+
∑
k

〈φm|V̂ |φk〉
1

(En − ωk) 〈φk|T̂ |φn〉,

which is (when we specify the state |φn〉) an integral equation that can actually
be solved by matrix inversion easily! The unknown quantity is the T -matrix.

The Lippman-Schwinger equation for two-nucleon scatter-
ing

Now we wish to introduce a partial wave decomposition in order to solve the
Lippman-Schwinger equation. With a partial wave decomposition we can reduce
a three-dimensional integral equation to a one-dimensional one.

Let us continue with our Schroedinger equation in the abstract vector repre-
sentation

(T + V ) |ψn〉 = En|ψn〉

Here T is the kinetic energy operator and V is the potential operator. The
eigenstates form a complete orthonormal set according to

1 =
∑
n

|ψn〉〈ψn|, 〈ψn|ψn′〉 = δn,n′

The Lippman-Schwinger equation for two-nucleon scatter-
ing

The most commonly used representations are the coordinate and the momen-
tum space representations. They define the completeness relations

1 =
∫
dr |r〉〈r|, 〈r|r′〉 = δ(r− r′)

1 =
∫
dk |k〉〈k|, 〈k|k′〉 = δ(k− k′)
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Here the basis states in both r- and k-space are dirac-delta function normalized.
From this it follows that the plane-wave states are given by,

〈r|k〉 =
(

1
2π

)3/2
exp (ik · r)

which is a transformation function defining the mapping from the abstract |k〉
to the abstract |r〉 space.

The Lippman-Schwinger equation for two-nucleon scatter-
ing
That the r-space basis states are delta-function normalized follows from

δ(r− r′) = 〈r|r′〉 = 〈r|1|r′〉 =
∫
dk〈r|k〉〈k|r′〉 =

(
1

2π

)3 ∫
dkeik(r−r′)

and the same for the momentum space basis states,

δ(k− k′) = 〈k|k′〉 = 〈k|1|k′〉 =
∫
dr〈k|r〉〈r|k′〉 =

(
1

2π

)3 ∫
dreir(k−k′)

The Lippman-Schwinger equation for two-nucleon scatter-
ing

Projecting on momentum states, we obtain the momentum space Schroedinger
equation as

~2

2µk
2ψn(k) +

∫
dk′V (k,k′)ψn(k′) = Enψn(k) (1)

Here the notation ψn(k) = 〈k|ψn〉 and 〈k|V |k′〉 = V (k,k′) has been introduced.
The potential in momentum space is given by a double Fourier-transform of the
potential in coordinate space, i.e.

V (k,k′) =
(

1
2π

)3 ∫
dr
∫
dr′ exp−ikrV (r, r′) exp ik′r′

The Lippman-Schwinger equation for two-nucleon scatter-
ing

Here it is assumed that the potential interaction does not contain any spin de-
pendence. Instead of a differential equation in coordinate space, the Schroedinger
equation becomes an integral equation in momentum space. This has many
tractable features. Firstly, most realistic nucleon-nucleon interactions derived
from field-theory are given explicitly in momentum space. Secondly, the bound-
ary conditions imposed on the differential equation in coordinate space are
automatically built into the integral equation. And last, but not least, integral
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equations are easy to numerically implement, and convergence is obtained by
just increasing the number of integration points. Instead of solving the three-
dimensional integral equation, an infinite set of 1-dimensional equations can be
obtained via a partial wave expansion.

The Lippman-Schwinger equation for two-nucleon scatter-
ing
The wave function ψn(k) can be expanded in a complete set of spherical

harmonics, that is

ψn(k) =
∑
lm

ψnlm(k)Ylm(k̂) ψnlm(k) =
∫
dk̂Y ∗lm(k̂)ψn(k)., (2)

By inserting equation (2) in equation (1), and projecting from the left Ylm(k̂),
the three-dimensional Schroedinger equation (1) is reduced to an infinite set of
1-dimensional angular momentum coupled integral equations,(

~2

2µk
2 − Enlm

)
ψnlm(k) = −

∑
l′m′

∫ ∞
0

dk′k′
2
Vlm,l′m′(k, k′)ψnl′m′(k′) (3)

where the angular momentum projected potential takes the form,

Vlm,l′m′(k, k′) =
∫
dk̂

∫
dk̂′Y ∗lm(k̂)V (kk′)Yl′m′(k̂′) (4)

here dk̂ = dθ sin(θ)dϕ. Note that we discuss only the orbital momentum, we will
include angular momentum and spin later.

The Lippman-Schwinger equation for two-nucleon scatter-
ing
The potential is often given in position space. It is then convenient to

establish the connection between Vlm,l′m′(k, k′) and Vlm,l′m′(r, r′). Inserting the
completeness relation for the position quantum numbers in equation (4) results
in

V =
∫
dr
∫
dr′
{∫

dk̂Y ∗lm(k̂)〈k|r〉
}
〈r|V |r′〉

{∫
dk̂′Ylm(k̂′)〈r′|k′〉

}
(5)

The Lippman-Schwinger equation for two-nucleon scatter-
ing
Since the plane waves depend only on the absolute values of position and

momentum, |k| and |r|, and the angle between them, θkr, they may be expanded
in terms of bipolar harmonics of zero rank, i.e.

exp (ik · r) = 4π
∞∑
l=0

iljl(kr)
(
Yl(k̂) · Yl(r̂)

)
=
∞∑
l=0

(2l + 1)iljl(kr)Pl(cos θkr)
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where the addition theorem for spherical harmonics has been used in order to
write the expansion in terms of Legendre polynomials. The spherical Bessel
functions, jl(z), are given in terms of Bessel functions of the first kind with half
integer orders,

jl(z) =
√

π

2z Jl+1/2(z).

The Lippman-Schwinger equation for two-nucleon scatter-
ing
Inserting the plane-wave expansion into the brackets of equation (5) yields,∫

dk̂Y ∗lm(k̂)〈k|r〉 =
(

1
2π

)3/2
4πi−ljl(kr)Y ∗lm(r̂),∫

dk̂′ Ylm(k̂′)〈r′|k′〉 =
(

1
2π

)3/2
4πil

′
jl′(k′r′)Yl′m′(r̂).

The Lippman-Schwinger equation for two-nucleon scatter-
ing

The connection between the momentum- and position space angular momen-
tum projected potentials are then given,

Vlm,l′m′(k, k′) = 2
π
il

′−l
∫ ∞

0
drr2

∫ ∞
0

dr′r′
2
jl(kr)Vlm,l′m′(r, r′)jl′(k′r′) (6)

which is known as a double Fourier-Bessel transform. The position space angular
momentum projected potential is given by

Vlm,l′m′(r, r′) =
∫
dr̂

∫
dr̂′Y ∗lm(r̂)V (r, r′)Yl′m′(r̂′). (7)

The Lippman-Schwinger equation for two-nucleon scatter-
ing
No assumptions of locality/non-locality and deformation of the interaction

has so far been made, and the result in equation (6) is general. In position
space the Schroedinger equation takes form of an integro-differential equation in
case of a non-local interaction, in momentum space the Schroedinger equation
is an ordinary integral equation of the Fredholm type, see equation (3). This
is a further advantage of the momentum space approach as compared to the
standard position space approach. If we assume that the interaction is of local
character, i.e.

〈r|V |r′〉 = V (r)δ(r− r′) = V (r)δ(r − r
′)

r2 δ(cos θ − cos θ′)δ(ϕ− ϕ′),
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then equation (6) reduces to

Vlm,l′m′(r, r′) = δ(r − r′)
r2

∫
dr̂ Y ∗lm(r̂)V (r)Yl′m′(r̂), (8)

The Lippman-Schwinger equation for two-nucleon scatter-
ing
and equation (6) reduces to

Vlm,l′m′(k, k′) = 2
π
il

′−l
∫ ∞

0
drr2jl(kr)Vlm,l′m′(r)jl′(k′r) (9)

where
Vlm,l′m′(r) =

∫
dr̂Y ∗lm(r̂)V (r)Yl′m′(r̂), (10)

The Lippman-Schwinger equation for two-nucleon scatter-
ing
In the case that the interaction is central, V (r) = V (r), then

Vlm,l′m′(r) = V (r)
∫
dr̂Y ∗lm(r̂)Yl′m′(r̂) = V (r)δl,l′δm,m′ , (11)

and

Vlm,l′m′(k, k′) = 2
π

∫ ∞
0

drr2jl(kr)V (r)jl′(k′r)δl,l′δm,m′ = Vl(k, k′)δl,l′δm,m′

(12)
where the momentum space representation of the interaction finally reads,

Vl(k, k′) = 2
π

∫ ∞
0

dr r2 jl(kr)V (r)jl(k′r). (13)

The Lippman-Schwinger equation for two-nucleon scatter-
ing
For a local and spherical symmetric potential, the coupled momentum space

Schroedinger equations given in equation (3) decouples in angular momentum,
giving

~2

2µk
2ψnl(k) +

∫ ∞
0

dk′k′
2
Vl(k, k′)ψnl(k′) = Enlψnl(k) (14)

Where we have written ψnl(k) = ψnlm(k), since the equation becomes indepen-
dent of the projection m for spherical symmetric interactions. The momentum
space wave functions ψnl(k) defines a complete orthogonal set of functions, which
spans the space of functions with a positive finite Euclidean norm (also called
l2-norm),

√
〈ψn|ψn〉, which is a Hilbert space. The corresponding normalized

wave function in coordinate space is given by the Fourier-Bessel transform

φnl(r) =
√

2
π

∫
dkk2jl(kr)ψnl(k)
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The Lippman-Schwinger equation for two-nucleon scatter-
ing

We will thus assume that the interaction is spherically symmetric and use the
partial wave expansion of the plane waves in terms of spherical harmonics. This
means that we can separate the radial part of the wave function from its angular
dependence. The wave function of the relative motion is described in terms of
plane waves as

exp (ıkr) = 〈r|k〉 = 4π
∑
lm

ıljl(kr)Y ∗lm(k̂)Ylm(r̂),

where jl is a spherical Bessel function and Ylm the spherical harmonics.

The Lippman-Schwinger equation for two-nucleon scatter-
ing
In terms of the relative and center-of-mass momenta k and K, the potential

in momentum space is related to the nonlocal operator V (r, r′) by

〈k′K′|V |kK〉 =
∫
drdr′ exp−(ık′r′)V (r′, r) exp ıkrδ(K,K′).

We will assume that the interaction is spherically symmetric. Can separate the
radial part of the wave function from its angular dependence. The wave function
of the relative motion is described in terms of plane waves as

exp (ıkr) = 〈r|k〉 = 4π
∑
lm

ıljl(kr)Y ∗lm(k̂)Ylm(r̂),

where jl is a spherical Bessel function and Ylm the spherical harmonic.

The Lippman-Schwinger equation for two-nucleon scatter-
ing
This partial wave basis is useful for defining the operator for the nucleon-

nucleon interaction, which is symmetric with respect to rotations, parity and
isospin transformations. These symmetries imply that the interaction is diagonal
with respect to the quantum numbers of total relative angular momentum J ,
spin S and isospin T (we skip isospin for the moment). Using the above plane
wave expansion, and coupling to final J and S and T we get

〈k′|V |k〉 = (4π)2
∑

STll′mlml′J

ıl+l
′
Y ∗lm(k̂)Yl′m′(k̂′)

〈lmlSmS |JM〉〈l′ml′SmS |JM〉〈k′l′SJM |V |klSJM〉,
where we have defined

〈k′l′SJM |V |klSJM〉 =
∫
jl′(k′r′)〈l′SJM |V (r′, r)|lSJM〉jl(kr)r′

2
dr′r2dr.
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We have omitted the momentum of the center-of-mass motion K and the cor-
responding orbital momentum L, since the interaction is diagonal in these
variables.

The Lippman-Schwinger equation for two-nucleon scatter-
ing
We wrote the Lippman-Schwinger equation as

〈φm|T̂ |φn〉 = 〈φm|V̂ |φn〉+
∑
k

〈φm|V̂ |φk〉
1

(En − ωk) 〈φk|T̂ |φn〉.

How do we rewrite it in a partial wave expansion with momenta k?

The Lippman-Schwinger equation for two-nucleon scatter-
ing
The general structure of the T -matrix in partial waves is

Tαll′(kk′Kω) = V αll′(kk′)

+ 2
π

∑
l′′ml′′MS

∫ ∞
0

dq(〈l′′ml′′SmS |JM〉)2Y
∗
l′′ml′′ (q̂)Yl′′ml′′ (q̂)V αll′′(kq)Tαl′′l′(qk′Kω)

ω −H0
,

(15)

The Lippman-Schwinger equation for two-nucleon scatter-
ing
The shorthand notation

Tαll′(kk′Kω) = 〈kKlLJ S|T (ω)|k′Kl′LJ S〉,

denotes the T -matrix with momenta k and k′ and orbital momenta l and l′ of
the relative motion, and K is the corresponding momentum of the center-of-mass
motion. Further, L, J , S and T are the orbital momentum of the center-of-mass
motion, the total angular momentum, spin and isospin, respectively. Due to the
nuclear tensor force, the interaction is not diagonal in ll′.

The Lippman-Schwinger equation for two-nucleon scatter-
ing

Using the orthogonality properties of the Clebsch-Gordan coefficients and the
spherical harmonics, we obtain the well-known one-dimensional angle independent
integral equation

Tαll′(kk′Kω) = V αll′(kk′) + 2
π

∑
l′′

∫ ∞
0

dqq2V
α
ll′′(kq)Tαl′′l′(qk′Kω)

ω −H0
.
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Inserting the denominator we arrive at

T̂αll′(kk′K) = V̂ αll′(kk′) + 2
π

∑
l′′

∫ ∞
0

dqq2V̂ αll′′(kq)
1

k2 − q2 + iε
T̂αl′′l′(qk′K).

The Lippman-Schwinger equation for two-nucleon scatter-
ing

To parameterize the nucleon-nucleon interaction we solve the Lippman-Scwhinger
equation

Tαll′(kk′K) = V αll′(kk′) + 2
π

∑
l′′

∫ ∞
0

dqq2V αll′′(kq)
1

k2 − q2 + iε
Tαl′′l′(qk′K).

The shorthand notation

T (V̂ )αll′(kk′Kω) = 〈kKlLJ S|T (ω)|k′Kl′LJ S〉,

denotes the T (V )-matrix with momenta k and k′ and orbital momenta l and l′ of
the relative motion, and K is the corresponding momentum of the center-of-mass
motion. Further, L, J , and S are the orbital momentum of the center-of-mass
motion, the total angular momentum and spin, respectively. We skip for the
moment isospin.

The Lippman-Schwinger equation for two-nucleon scatter-
ing
For scattering states, the energy is positive, E > 0. The Lippman-Schwinger

equation (a rewrite of the Schroedinger equation) is an integral equation where
we have to deal with the amplitude R(k, k′) (reaction matrix, which is the real
part of the full complex T -matrix) defined through the integral equation for one
partial wave (no coupled-channels)

Rl(k, k′) = Vl(k, k′) + 2
π
P
∫ ∞

0
dqq2Vl(k, q)

1
E − q2/m

Rl(q, k′). (16)

For negative energies (bound states) and intermediate states scattering states
blocked by occupied states below the Fermi level.

The Lippman-Schwinger equation for two-nucleon scatter-
ing
The symbol P in the previous slide indicates that Cauchy’s principal-value

prescription is used in order to avoid the singularity arising from the zero of the
denominator.

The total kinetic energy of the two incoming particles in the center-of-mass
system is

E = k2
0

mn
.

20



The Lippman-Schwinger equation for two-nucleon scatter-
ing
The matrix Rl(k, k′) relates to the the phase shifts through its diagonal

elements as
Rl(k0, k0) = − tanδl

mk0
. (17)

The Lippman-Schwinger equation for two-nucleon scatter-
ing
From now on we will drop the subscript l in all equations. In order to solve

the Lippman-Schwinger equation in momentum space, we need first to write a
function which sets up the mesh points. We need to do that since we are going
to approximate an integral through∫ b

a

f(x)dx ≈
N∑
i=1

wif(xi),

where we have fixed N lattice points through the corresponding weights wi and
points xi. Typically obtained via methods like Gaussian quadrature.

The Lippman-Schwinger equation for two-nucleon scatter-
ing

If you use Gauss-Legendre the points are determined for the interval xi ∈ [−1, 1]
You map these points over to the limits in your integral. You can then use the
following mapping

ki = const× tan
{π

4 (1 + xi)
}
,

and
ωi = const

π

4
wi

cos2
(
π
4 (1 + xi)

) .
If you choose units fm−1 for k, set const = 1. If you choose to work with MeV,
set const ∼ 200 (~c = 197 MeVfm).

The Lippman-Schwinger equation for two-nucleon scatter-
ing
The principal value integral is rather tricky to evaluate numerically, mainly

since computers have limited precision. We will here use a subtraction trick
often used when dealing with singular integrals in numerical calculations. We
introduce first the calculus relation∫ ∞

−∞

dk

k − k0
= 0.
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It means that the curve 1/(k − k0) has equal and opposite areas on both sides
of the singular point k0. If we break the integral into one over positive k and
one over negative k, a change of variable k → −k allows us to rewrite the last
equation as ∫ ∞

0

dk

k2 − k2
0

= 0.

The Lippman-Schwinger equation for two-nucleon scatter-
ing
We can then express a principal values integral as

P
∫ ∞

0

f(k)dk
k2 − k2

0
=
∫ ∞

0

(f(k)− f(k0))dk
k2 − k2

0
, (18)

where the right-hand side is no longer singular at k = k0, it is proportional to
the derivative df/dk, and can be evaluated numerically as any other integral.

The Lippman-Schwinger equation for two-nucleon scatter-
ing
We can then use this trick to obtain

R(k, k′) = V (k, k′) + 2
π

∫ ∞
0

dq
q2V (k, q)R(q, k′)− k2

0V (k, k0)R(k0, k
′)

(k2
0 − q2)/m . (19)

This is the equation to solve numerically in order to calculate the phase shifts.
We are interested in obtaining R(k0, k0).

The Lippman-Schwinger equation for two-nucleon scatter-
ing
How do we proceed?
Using the mesh points kj and the weights ωj , we reach

R(k, k′) = V (k, k′)+ 2
π

N∑
j=1

ωjk
2
jV (k, kj)R(kj , k′)
(k2

0 − k2
j )/m − 2

π
k2

0V (k, k0)R(k0, k
′)

N∑
n=1

ωn
(k2

0 − k2
n)/m.

The Lippman-Schwinger equation for two-nucleon scatter-
ing

This equation contains now the unknowns R(ki, kj) (with dimension N ×N)
and R(k0, k0).

We can turn it into an equation with dimension (N + 1)× (N + 1) with a
mesh which contains the original mesh points kj for j = 1, N and the point
which corresponds to the energy k0. Consider the latter as the ’observable’ point.
The mesh points become then kj for j = 1, n and kN+1 = k0.
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With these new mesh points we define the matrix

Ai,j = δi,j − V (ki, kj)uj , (20)

The Lippman-Schwinger equation for two-nucleon scatter-
ing
where δ is the Kronecker δ and

uj = 2
π

ωjk
2
j

(k2
0 − k2

j )/m j = 1, N

and

uN+1 = − 2
π

N∑
j=1

k2
0ωj

(k2
0 − k2

j )/m.

The Lippman-Schwinger equation for two-nucleon scatter-
ing
The first task is then to set up the matrix A for a given k0. This is an

(N + 1) × (N + 1) matrix. It can be convenient to have an outer loop which
runs over the chosen observable values for the energy k2

0/m. Note that all mesh
points kj for j = 1, N must be different from k0. Note also that V (ki, kj) is an
(N + 1)× (N + 1) matrix.

With the matrix A we can rewrite the problem as a matrix problem of
dimension (N + 1)× (N + 1). All matrices R, A and V have this dimension and
we get

Ai,lRl,j = Vi,j ,

or just
AR = V.

The Lippman-Schwinger equation for two-nucleon scatter-
ing

Since you already have defined A and V (these are stored as (N + 1)× (N + 1)
matrices) The final equation involves only the unknown R. We obtain it by
matrix inversion, i.e.,

R = A−1V. (21)

Thus, to obtain R, you will need to set up the matrices A and V and invert the
matrix A. With the inverse A−1, perform a matrix multiplication with V results
in R.
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The Lippman-Schwinger equation for two-nucleon scatter-
ing
With R you can then evaluate the phase shifts by noting that

R(kN+1, kN+1) = R(k0, k0) = − tanδ
mk0

,

where δ are the phase shifts.

The Lippman-Schwinger equation for two-nucleon scatter-
ing
For elastic scattering, the scattering potential can only change the outgoing

spherical wave function up to a phase. In the asymptotic limit, far away from
the scattering potential, we get for the spherical bessel function

jl(kr)
r�1−−−→ sin(kr − lπ/2)

kr
= 1

2ik

(
ei(kr−lπ/2)

r
− e−i(kr−lπ/2)

r

)
The outgoing wave will change by a phase shift δl, from which we can define the
S-matrix Sl(k) = e2iδl(k). Thus, we have

ei(kr−lπ/2)

r

phasechange−−−−−−−−→ Sl(k)ei(kr−lπ/2)

r

The Lippman-Schwinger equation for two-nucleon scatter-
ing

The solution to the Schrodinger equation for a spherically symmetric potential,
will have the form

ψk(r) = eikr + f(θ)e
ikr

r

where f(θ) is the scattering amplitude, and related to the differential cross
section as

dσ

dΩ = |f(θ)|2

Using the expansion of a plane wave in spherical waves, we can relate the
scattering amplitude f(θ) with the partial wave phase shifts δl by identifying
the outgoing wave

ψk(r) = eikr +
[

1
2ik

∑
l

il(2l + 1)(Sl(k)− 1)Pl(cos(θ))e−ilπ/2
]
eikr

r

which can be simplified further by cancelling il with e−ilπ/2
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The Lippman-Schwinger equation for two-nucleon scatter-
ing
We have

ψk(r) = eikr + f(θ)e
ikr

r

with
f(θ) =

∑
l

(2l + 1)fl(θ)Pl(cos(θ))

where the partial wave scattering amplitude is given by

fl(θ) = 1
k

(Sl(k)− 1)
2i = 1

k
sin δl(k)eiδl(k)

With Eulers formula for the cotangent, this can also be written as

fl(θ) = 1
k

1
cot δl(k)− i .

The Lippman-Schwinger equation for two-nucleon scatter-
ing

Figure 1: Examples of negative and positive phase shifts for repulsive and
attractive potentials, respectively.

Interpretation of phase shifts.

The Lippman-Schwinger equation for two-nucleon scatter-
ing
The integrated cross section is given by

σ = 2π
∫ π

0
|f(θ)|2 sin θdθ

= 2π
∑
l

| (2l + 1)
k

sin(δl)|2
∫ π

0
(Pl(cos(θ)))2 sin(θ)dθ

= 4π
k2

∑
l

(2l + 1) sin2 δl(k) = 4π
∑
l

(2l + 1)|fl(θ)|2,
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where the orthogonality of the Legendre polynomials was used to evaluate the
last integral ∫ π

0
Pl(cos θ)2 sin θdθ = 2

2l + 1 .

Thus, the total cross section is the sum of the partial-wave cross sections. Note
that the differential cross section contains cross-terms from different partial waves.
The integral over the full sphere enables the use of the legendre orthogonality,
and this kills the cross-terms.

The Lippman-Schwinger equation for two-nucleon scatter-
ing
At low energy, k → 0, S-waves are most important. In this region we can

define the scattering length a and the effective range r. The S-wave scattering
amplitude is given by

fl(θ) = 1
k

1
cot δl(k)− i .

Taking the limit k → 0, gives us the expansion

k cot δ0 = −1
a

+ 1
2r0k

2 + . . .

Thus the low energy cross section is given by

σ = 4πa2.

If the system contains a bound state, the scattering length will become positive
(neutron-proton in 3S1). For the 1S0 wave, the scattering length is negative and
large. This indicates that the wave function of the system is at the verge of
turning over to get a node, but cannot create a bound state in this wave.

The Lippman-Schwinger equation for two-nucleon scatter-
ing
Low energy scattering length.

The Lippman-Schwinger equation for two-nucleon scatter-
ing

It is important to realize that the phase shifts themselves are not observables.
The measurable scattering quantity is the cross section, or the differential cross
section. The partial wave phase shifts can be thought of as a parameterization
of the (experimental) cross sections. The phase shifts provide insights into the
physics of partial wave projected nuclear interactions, and are thus important
quantities to know.

The nucleon-nucleon differential cross section have been measured at almost
all energies up to the pion production threshold (290 MeV in the Lab frame),
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Figure 2: Examples of scattering lengths.

and this experimental data base is what provides us with the constraints on
our nuclear interaction models. In order to pin down the unknown coupling
constants of the theory, a statistical optimization with respect to cross sections
need to be carried out. This is how we constrain the nucleon-nucleon interaction
in practice!

The Lippman-Schwinger equation for two-nucleon scatter-
ing

Figure 3: Nijmegen phase shifts for selected partial waves.

Nijmegen multi-energy pp PWA phase shifts. The pp-data is more accu-
rate than the np-data, and for nn there is no data. The quality of a potential is
gauged by the χ2/datum with respect to the scattering data base
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The Lippman-Schwinger equation for two-nucleon scatter-
ing
Nijmegen multi-energy pp PWA phase shifts.

Tlab bin (MeV) N3LO1 NNLO2 NLO2 AV183

0-100 1.05 1.7 4.5 0.95
100-190 1.08 22 100 1.10
190-290 1.15 47 180 1.11
0− 290 1.10 20 86 1.04
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The Lippman-Schwinger equation for two-nucleon scatter-
ing
An example: chiral twobody interactions.

Leff = Lππ(fπ,mπ) + LπN (fπ,MN , gA, ci, di, ...) + LNN (Ci, C̃i, Di, ...) + . . .
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The Lippman-Schwinger equation for two-nucleon scatter-
ing
Proton-neutron 1S0 phase shift. Note that the Nijm93 PWA phase shift
becomes negative at Tlab > 250MeV. This indicates that the nucleon-nucleon
potential is repulsive at short distances

The Lippman-Schwinger equation for two-nucleon scatter-
ing

28



-60

-40

-20

 0

 20

 40

 60

 80

 0  50  100  150  200  250  300  350

d
e
lt

a
 [

d
e
g
]

Tlab [MeV]

pn-1s0

IDAHO-N3LO[500]
POUNDERS-N2LO[500]

JUELICH-N2LO[450,500]
JUELICH-N2LO[600,500]
JUELICH-N2LO[550,600]
JUELICH-N2LO[450,700]
JUELICH-N2LO[600,700]

Nijm93 PWA

Figure 4: Proton-neutron 1S0 phase shift.

 0

 2

 4

 6

 8

 10

 12

 14

 0  20  40  60  80  100  120  140  160  180

D
S

G
 [

m
b

]

cm scattering angle [deg]

pn-DSG: differential cross section @ 199.90 MeV

IDAHO-N3LO[500]
CD-Bonn

experiment

Figure 5: Proton-neutron 1S0 phase shift.
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