Solving the CCD equations

One way to solve these equations, is to write equation (3) as a series of iterative nonlinear algebraic equations $$ \begin{align} t_{ij}^{ab}{}^{(n+1)} = \frac{1}{\epsilon^{ab}_{ij}} \bigg(\langle ab \vert \hat{v} \vert ij \rangle & \nonumber \\ +\frac{1}{2}\sum_{cd} \langle ab \vert \hat{v} \vert cd \rangle t_{ij}^{cd}{}^{(n)}+\frac{1}{2}\sum_{kl} \langle kl \vert \hat{v} \vert ij \rangle t_{kl}^{ab}{}^{(n)}+\hat{P}(ij\vert ab)\sum_{kc} \langle kb \vert \hat{v} \vert cj \rangle t_{ik}^{ac}{}^{(n)} & \nonumber \\ +\frac{1}{4}\sum_{klcd} \langle kl \vert \hat{v} \vert cd \rangle t_{ij}^{cd}{}^{(n)}t_{kl}^{ab}{}^{(n)}+\hat{P}(ij)\sum_{klcd} \langle kl \vert \hat{v} \vert cd \rangle t_{ik}^{ac}{}^{(n)}t_{jl}^{bd}{}^{(n)}& \nonumber \\ -\frac{1}{2}\hat{P}(ij)\sum_{klcd} \langle kl \vert \hat{v} \vert cd \rangle t_{ik}^{dc}{}^{(n)}t_{lj}^{ab}{}^{(n)}-\frac{1}{2}\hat{P}(ab)\sum_{klcd} \langle kl \vert \hat{v} \vert cd \rangle t_{lk}^{ac}{}^{(n)}t_{ij}^{db}{}^{(n)} \bigg),& \tag{11} \end{align} $$ for all \( i < j \) and all \( a < b \), where \( \epsilon^{ab}_{ij} =\left(\epsilon_i+\epsilon_j-\epsilon_a-\epsilon_b\right) \), and \( t_{ij}^{ab}{}^{(n)} \) is the \( t \) amplitude for the nth iteration of the series. This way, given some starting guess \( t_{ij}^{ab}{}^{(0)} \), we can generate subsequent \( t \) amplitudes that converges to some value.