We can thus rewrite the exact wave function as
$$ \vert \Psi_0\rangle= (\hat{P}+\hat{Q})\vert \Psi_0\rangle=\vert \Phi_0\rangle+\hat{Q}\vert \Psi_0\rangle. $$Going back to the Schr\"odinger equation, we can rewrite it as, adding and a subtracting a term \( \omega \vert \Psi_0\rangle \) as
$$ \left(\omega-\hat{H}_0\right)\vert \Psi_0\rangle=\left(\omega-E+\hat{H}_I\right)\vert \Psi_0\rangle, $$where \( \omega \) is an energy variable to be specified later.