Many-body perturbation theory

We get the following expression for \( \Delta E^{(i)} \)

$$ \Delta E^{(1)}=\langle \Phi_0\vert \hat{H}_I\vert \Phi_0\rangle, $$

which is just the contribution to first order in perturbation theory,

$$ \Delta E^{(2)}=\langle\Phi_0\vert \hat{H}_I\frac{\hat{Q}}{W_0-\hat{H}_0}\hat{H}_I\vert \Phi_0\rangle, $$

which is the contribution to second order.

$$ \Delta E^{(3)}=\langle \Phi_0\vert \hat{H}_I\frac{\hat{Q}}{W_0-\hat{H}_0}\hat{H}_I\frac{\hat{Q}}{W_0-\hat{H}_0}\hat{H}_I\Phi_0\rangle- \langle\Phi_0\vert \hat{H}_I\frac{\hat{Q}}{W_0-\hat{H}_0}\langle \Phi_0\vert \hat{H}_I\vert \Phi_0\rangle\frac{\hat{Q}}{W_0-\hat{H}_0}\hat{H}_I\vert \Phi_0\rangle, $$

being the third-order contribution.