Analysis of Hartree-Fock equations and Koopman's theorem

Calculating the difference $$ E[\Phi^{\mathrm{HF}}(A)]- E[\Phi^{\mathrm{HF}}(A-1)] = \langle k | \hat{h}_0 | k \rangle + \frac{1}{2}\sum_{i=1;i\ne k}^A\langle ik|\hat{v}|ik\rangle_{AS} \frac{1}{2}\sum_{j=1;j\ne k}^A\langle kj|\hat{v}|kj\rangle_{AS}, $$ which becomes $$ E[\Phi^{\mathrm{HF}}(A)]- E[\Phi^{\mathrm{HF}}(A-1)] = \langle k | \hat{h}_0 | k \rangle + \frac{1}{2}\sum_{j=1}^A\langle kj|\hat{v}|kj\rangle_{AS} $$ which is just our definition of the Hartree-Fock single-particle energy $$ E[\Phi^{\mathrm{HF}}(A)]- E[\Phi^{\mathrm{HF}}(A-1)] = \epsilon_k^{\mathrm{HF}} $$