Good reference state

At this point, it is important to recall that we assumed starting from a "good" reference state. In such a case, we might reasonably expect that the inclusion of 1p-1h and 2p-2h excitations could result in an accurate approximation. Indeed, empirically one finds that CCSD accounts for about 90% of the corelation energy, i.e. of the difference between the exact energy and the Hartree-Fock energy. The inclusion of triples (3p-3h excitations) typically yields 99% of the correlation energy.

We see that the coupled-cluster method in its CCSD approximation yields a similarity-transformed Hamiltonian that is of a two-body structure with respect to a non-trivial vacuum. When viewed in this light, the coupled-cluster method "transforms" an \( A \)-body problem (in CCSD) into a two-body problem, albeit with respect to a nontrivial vacuum.